Закрыть рекламу ×
Закрыть рекламу ×

Расчет скорости воздуха в воздуховоде по сечению: таблицы, формулы

Расчет скорости воздуха в воздуховоде

Расчет скорости воздуха в воздуховоде

В этой статье мы дадим ответ на вопрос — как правильно рассчитать скорости течения воздуха в воздуховодах различной формы.

Здесь приведены формулы расчета скорости воздуха и давления в воздуховоде (круглого или прямоугольного сечения) в зависимости от расхода воздуха и площади сечения. Для быстрого расчета можно воспользоваться онлайн-калькулятором.

Формула расчета скорости воздуха в метрической системе:


где W — скорость потока, м/час
Q — расход воздуха, м 3 /час
S — площадь сечения воздуховода, м 2

Простой способ расчета скорости воздуха в воздуховоде

Для расчета величины скорости воздуха нужно объем перемещаемого воздуха в м3/ч разделить на 3600 (количество секунд в часе) и разделить на площадь сечения воздуховода, либо введите значения в поля ниже.

Примеры расчета скорости воздуха в квадратном воздуховоде

Пример № 1 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,2 = 0,69 м/с

Пример № 2 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,2 = 3,47 м/с

Примеры расчета скорости воздуха воздуховоде прямоугольного сечения

Пример № 3 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод прямоугольный 200 мм на 400 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,4 = 0,35 м/с

Пример № 4 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 400 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,4 = 1,74 м/с

Пример № 5 расчета скорости воздуха:

  • объем перемещаемого воздуха = 1000 м3
  • воздуховод квадратный 200 мм на 400 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,4 = 3,47 м/с

Примеры расчета скорости воздуха воздуховоде круглого сечения

Пример № 6 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод круглый диаметром 200 мм

Скорость воздуха равна 100 / 3600 / (3,14 * 0,2 * 0,2/4) = 0,88 м/с

Пример № 7 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод круглый диаметром 300 мм

Скорость воздуха равна 500 / 3600 / (3,14 * 0,3 * 0,3/4) = 1,96 м/с

Пример № 8 расчета скорости воздуха:

  • объем перемещаемого воздуха = 1000 м3
  • воздуховод круглый диаметром 400 мм

Скорость воздуха равна 1000 / 3600 / (3,14 * 0,4 * 0,4/4) = 2,21 м/с

Готовые таблицы определения скорости воздуха в воздуховоде

Для определения расчетной скорости воздуха в воздуховодах можно использовать готовые таблицы. Такие таблицы не сложно найти в открытых источниках информации. Скоростные характеристики важны для расчета эффективности работы системы вентиляции.

Таблица расчета скорости течения воздуха в круглом воздуховоде.

Таблица расчета скорости течения воздуха в прямоугольном воздуховоде.

Рекомендуемая скорость воздуха в вентиляционных воздуховодах

Скорость движения воздушных масс в каналах не ограничивается и не нормируется, ее следует принимать по результатам расчета, руководствуясь соображениями экономической целесообразности.

Рекомендуемая скорость воздуха для различных систем вентиляции:

  • для общеобменных систем вентиляции с сечением воздуховодов до 600×600 — менее 4 м/с;
  • для систем вентиляции с сечением воздуховодов более 600×600 — менее 6 м/с;
  • для систем дымоудаления и специфических систем вентиляции — менее 10 м/с..

Правильный расчет скорости воздуха позволяет построить эффективную систему вентиляции!

Как рассчитать допустимую скорость воздуха в воздуховоде

При расчете и установке вентиляции большое внимание уделяется количеству свежего воздуха, поступающего по этим каналам. Для вычислений используются стандартные формулы, которые хорошо отражают зависимость между габаритами вытяжных устройств, скоростью движения и расходом воздуха. Некоторые нормы прописаны в СНиПах, но в большинстве своем имеют рекомендательный характер.

  1. Общие принципы расчета
  2. Формулы для расчета
  3. Несколько полезных советов и замечаний

Общие принципы расчета

Воздуховоды могут быть изготовлены из различных материалов (пластик, металл) и иметь разные формы (круглые, прямоугольные). СНиП регулирует только габариты вытяжных устройств, но не нормирует количество притяжного воздуха, т. к. его потребление в зависимости от типа и назначения помещения может сильно различаться. Этот параметр высчитывается по специальным формулам, которые подбираются отдельно. Нормы установлены только для социальных объектов: больниц, школ, дошкольных учреждений. Они прописаны в СНиПах для таких зданий. При этом отсутствуют четкие правила по скорости движения воздуха в воздуховоде. Есть только рекомендуемые значения и нормы для принудительной и естественной вентиляции в зависимости от ее типа и назначения, их можно посмотреть в соответствующих СНиПах. Это отражено в таблице, приведенной ниже. Скорость движения воздуха измеряется в м/с.

Рекомендуемые скорости воздуха

Дополнить данные в таблице можно следующим образом: при естественной вентиляции скорость движения воздуха не может превышать 2 м/с независимо от ее назначения, минимальная допустимая – 0,2 м/с. В противном случае обновление газовой смеси в помещении будет недостаточным. При принудительной вытяжке максимально допустимым считается значение 8 -11 м/с для магистральных воздуховодов. Превышать данные нормы не следует, т. к. это создаст слишком большое давление и сопротивление в системе.

Формулы для расчета

Для проведения всех необходимых вычислений необходимо обладать некоторыми данными. Чтобы вычислить скорость воздуха, понадобится следующая формула:

ϑ= L / 3600*F, где

ϑ – скорость потока воздуха в трубопроводе вентиляционного устройства, измеряется в м/с;

L – расход воздушных масс (данная величина измеряется в м 3 /ч) на том участке вытяжной шахты, для которого производится вычисление;

F – площадь поперечного сечения трубопровода, измеряется в м 2 .

По данной формуле и производится расчет скорости воздуха в воздуховоде, причем его фактическое значение.

Из этой же формулы можно вывести и все остальные недостающие данные. Например, чтобы рассчитать расход воздуха, формулу необходимо преобразовать следующим образом:

L = 3600 x F x ϑ.

В некоторых случаях подобные вычисления производить сложно или не хватает времени. В этом случае можно использовать специальный калькулятор. Встречается множество подобных программ в интернете. Для инженерных бюро лучше установить специальные калькуляторы, которые обладают большей точностью (вычитают толщину стенки трубы при расчете ее площади поперечного сечения, ставят большее количество знаков в число пи, высчитывают более точный расход воздуха и т. д.).

Знать скорость движения воздуха необходимо для того, чтобы вычислить не только объем подачи газовой смеси, но и для определения динамического давления на стенки каналов, потерь на трение и сопротивление и т.д.

Несколько полезных советов и замечаний

Как можно понять из формулы (или при проведении практических расчетов на калькуляторах), скорость воздуха увеличивается при уменьшении размеров трубы. Их этого факта можно извлечь ряд преимуществ:

  • не возникнет потерь или необходимости в прокладке дополнительного вентиляционного трубопровода для обеспечения необходимого расхода воздуха, если габариты помещения не позволяют провести каналы больших размеров;
  • можно прокладывать трубопроводы меньших размеров, что в большинстве случаев проще и удобней;
  • чем меньше диаметр канала, тем дешевле его стоимость, снизится цена и на доборные элементы (заслонки, клапаны);
  • меньший размер труб расширяет возможности монтажа, их можно расположить так, как нужно, практически не подстраиваясь под внешние стесняющие факторы.

Однако при прокладке воздуховодов меньшего диаметра необходимо помнить, что при повышении скорости воздуха повышается динамическое давление на стенки труб, увеличивается и сопротивление системы, соответственно потребуется более мощный вентилятор и дополнительные расходы. Поэтому до монтажа необходимо тщательно провести все расчеты, чтобы экономия не обернулась большими затратами или даже убытками, т.к. постройку, не соответствующую нормам СНиП могут не допустить до эксплуатации.

Расчет скорости воздуха в воздуховодах

У нас вы можете заказать пластиковые воздуховоды, вентиляторы, гальванические фильтра ФВГ, скрубберы, гальванические ванны, зонты, борт отсосы, емкости, реактора и диссольверы для ЛКМ разработки и производства компании Plast-Product оптом и в розницу, типовые и по вашим чертежам, под ваши задачи. Материал изготовления: полиэтилен PE, полипропилен PP (блоксоплимер), PPs EL антистатичный негорючий полипропилен, PPs негорючий полипропилен PVC ПВХ материал высокой химической стойкости, нержавеющая сталь. Ознакомьтесь с каталогом всей нашей продукции. Ассортимент продукции компании Plast-Product довольно велик.

Виды производимой продукции

Воздуховоды хим стойкие

В разделе представлены круглые и прямоугольные модели, а также услуги по проектированию и монтажу пластиковых воздуховодов. Специалисты и менеджеры помогут подобрать и рассчитают цену любой интересующей вас продукции. Воздуховоды применяются на промышленных и бытовых объектах, не проводят электричество, устойчивы к коррозии и отличаются эстетичным видом. Обеспечивают бесшумную подачу свежего воздуха.

Промышленные вентиляторы хим стойкие

Промышленные химически стойкие вентиляторы Plast-Product – предназначенные для гальванических цехов и производственных помещений с агрессивными испарениями. Производятся из хим стойких пластиков Полипропилен ПНД, ПВХ и ПВДФ. Материал и характеристики подбираются в зависимости от задач заказчика.

Фильтры хим стойкие (ФВГ, Нутч-фильтры)

Производим на заказ различные виды фильтров: волокнистые, нутч-фильтры, гальванические фильтры ФВГ. Применяются в гальванических производствах химических лабораториях, на производствах для очистки воздушных выбросов от жидких и растворимых в воде твердых аэрозольных частиц.

Скруббер
Компания Plast-Product производит скрубберы абсорберы и центробежно-барботажные установки, аппараты которые используются для очистки воздуха от пыле-газо-воздушных смесей и токсичных испарений.

Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в воздуховоде должна обеспечивать выполнение существующих норм.

Что учитывается при определении скорости движения воздуха

Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?

Уровень шума в помещении

В зависимости от конкретного использования помещений санитарные нормы устанавливают следующие показатели максимального звукового давления.

Таблица 1. Максимальные значения уровня шума.

Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.
Уровень вибрации в помещении Во время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.

Таблица 2. Максимальные показатели допустимой вибрации.

При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.

Значения по скорости движения потока, влажности и температуре содержатся в таблице.

Таблица 3. Параметры микроклимата.

Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.

Таблица 4. Кратность воздухообмена в различных помещениях.

Бытовые
Бытовые помещения Кратность воздухообмена
Жилая комната (в квартире или в общежитии) 3м 3 /ч на 1м 2 жилых помещений
Кухня квартиры или общежития 6-8
Ванная комната 7-9
Душевая 7-9
Туалет 8-10
Прачечная (бытовая) 7
Гардеробная комната 1,5
Кладовая 1
Гараж 4-8
Погреб 4-6
Промышленные
Промышленные помещения и помещения большого объема Кратность воздухообмена
Театр, кинозал, конференц-зал 20-40 м 3 на человека
Офисное помещение 5-7
Банк 2-4
Ресторан 8-10
Бар, Кафе, пивной зал, бильярдная 9-11
Кухонное помещение в кафе, ресторане 10-15
Универсальный магазин 1,5-3
Аптека (торговый зал) 3
Гараж и авторемонтная мастерская 6-8
Туалет (общественный) 10-12 (или 100 м 3 на один унитаз)
Танцевальный зал, дискотека 8-10
Комната для курения 10
Серверная 5-10
Спортивный зал не менее 80 м 3 на 1 занимающегося и не менее 20 м 3 на 1 зрителя
Парикмахерская (до 5 рабочих мест) 2
Парикмахерская (более 5 рабочих мест) 3
Склад 1-2
Прачечная 10-13
Бассейн 10-20
Промышленный красильный цел 25-40
Механическая мастерская 3-5
Школьный класс 3-8

Алгоритм расчетов Скорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.

Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.

Самостоятельный расчет

К примеру, в помещении объемом 20 м 3 согласно требованиям санитарных норм для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м 3 ×3= 60 м 3 . Формула расчета скорости потока V= L / 3600× S, где:

V – скорость потока воздуха в м/с;

L – расход воздуха в м 3 /ч;

S – площадь сечения воздуховодов в м 2 .

Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:

В нашем примере S = (3.14×0,4 2 м)/4=0,1256 м 2 . Соответственно, для обеспечения нужной кратности обмена воздуха (60 м 3 /ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м 3 ) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.

С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.

L = 3600×S (м 3 )×V(м/с). Объем (расход) получается в квадратных метрах.

Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.

Таблица 6. Рекомендованные параметры скоростей воздуха

Рекомендуемые значения скорости
Квартиры Офисы Производственные помещения
Приточные решетки 2,0-2,5 2,0-2,5 2,5-6,0
Магистральные воздуховоды 3,5-5,0 3,5-6,0 6,0-11,0
Ответвления 3,0-5,0 3,0-6,5 4,0-9,0
Воздушные фильтры 1,2-1,5 1,5-1,8 1,5-1,8
Теплообменники 2,2-2,5 2,5-3,0 2,5-3,0

По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.

Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.

Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:

После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.

Для воздушного обогрева жилых и производственных помещений скорости регулируются с учетом температуры теплоносителя на входе и выходе, для равномерного рассеивания потока теплого воздуха продумывается схема монтажа и размеры вентиляционных решеток. Современные системы воздушного обогрева предусматривают возможность автоматической регулировки скорости и направления потоков. Температура воздуха не может превышать +50°С на выходе, расстояние до рабочего места не менее 1,5 м. Скорость подачи воздушных масс нормируется действующими государственными стандартами и отраслевыми актами.

Во время расчетов по требованию заказчиков может учитываться возможность монтажа дополнительных ответвлений, с этой целью предусматривается запас производительности оборудования и пропускной способности каналов. Скорости потока рассчитываются таким образом, чтобы после увеличения мощности вентиляционных систем они не создавали дополнительную звуковую нагрузку на присутствующих в помещении людей.

Выбор диаметров выполняется от минимально приемлемого, чем меньше габариты – тем универсальное система вентиляции, тем дешевле обходится ее изготовление и монтаж. Системы местных отсосов рассчитываются отдельно, могут работать как в автономном режиме, так и подключаться к существующим вентиляционным системам.

Государственные нормативные документы устанавливают рекомендованные скорости движения в зависимости от расположения и назначения воздуховодов. При расчетах нужно придерживаться этих параметров.

Таблица 7. Рекомендованные скорости воздуха в различных каналах

Тип и место установки воздуховода и решетки Вентиляция
Естественная Механическая
Воздухоприемные жалюзи 0,5-1,0 2,0-4,0
Каналы приточных шахт 1,0-2,0 2,0-6,0
Горизонтальные сборные каналы 0,5-1,0 2,0-5,0
Вертикальные каналы 0,5-1,0 2,0-5,0
Приточные решетки у пола 0,2-0,5 0,2-0,5
Приточные решетки у потолка 0,5-1,0 1,0-3,0
Вытяжные решетки 0,5-1,0 1,5-3,0
Вытяжные шахты 1,0-1,5 3,0-6,0

Внутри помещений воздух не может двигаться со скоростью более 0,3 м/с, допускается кратковременное превышение параметра не более чем 30%. Если в помещении имеется две системы, то скорость воздуха в каждой из них должна обеспечивать не менее 50% расчетного объема подачи или удаления воздуха.

Пожарные организации выдвигают свои требования по скорости перемещения воздушных масс в воздуховодах в зависимости от категории помещения и особенностей технологического процесса. Нормативы направлены на уменьшение скорости распространения дыма или огня по воздуховодам. В случае необходимости на вентиляционных системах должны устанавливаться клапаны и отсекатели. Срабатывание устройств происходит после сигнала датчика или выполняется вручную ответственным лицом. В одну систему вентиляции можно подключать только определенные группы помещений.

В холодный период времени в отапливаемых зданиях температура воздуха в результате функционирования вентиляционной системы не может понижаться ниже нормируемых. Нормируемая температура обеспечивается до начала рабочей смены. В теплый период времени эти требования не актуальны. Движение воздушных масс не должно ухудшать предусмотренные СанПин 2.1.2.2645 нормативы. Для достижения нужных результатов во время проектирования систем изменяется диаметр воздуховодов, мощность и количество вентиляторов и скорости потока.

Принимаемые расчетные данные по параметрам движения в воздуховодах должны обеспечивать:

  1. Выполнение параметров микроклимата в помещениях, поддержку качества воздуха в регламентируемых пределах. При этом принимаются меры по снижению непродуктивных тепловых потерь. Данные берутся как из существующих нормативных документов, так и из технического задания заказчиков.
  2. Скорость движения воздушных масс в рабочих зонах не должна вызывать сквозняки, обеспечивать приемлемую комфортность пребывания в помещении. Механическая вентиляция предусматривается только в тех случаях, когда добиться желаемых результатов за счет естественной невозможно. Кроме этого, механическая вентиляция обязательно монтируется в цехах с вредными условиями труда.

Во время расчетов показателей движения воздуха в системах с естественной вентиляцией берется среднегодовое значение разности плотности внутреннего и наружного воздуха. Минимальные фактические данные по производительности должны обеспечивать допустимые нормативные значения кратности обмена воздуха.

Устройство вентиляции — самое распространённое заблуждение

Расчет скорости воздуха в воздуховоде

В этой статье мы дадим ответ на вопрос — как правильно рассчитать скорости течения воздуха в воздуховодах различной формы.

Здесь приведены формулы расчета скорости воздуха и давления в воздуховоде (круглого или прямоугольного сечения) в зависимости от расхода воздуха и площади сечения. Для быстрого расчета можно воспользоваться онлайн-калькулятором.

Формула расчета скорости воздуха в метрической системе:

где W — скорость потока, м/час Q — расход воздуха, м3/час S — площадь сечения воздуховода, м2

Расчет полного воздухообмена


Формула расчета воздухообмена по кратности.

При его определении следует исходить прежде всего из того, каков тип помещения и его габариты. Интенсивность воздухообмена существенно различается в жилых, офисных, промышленных помещениях. Она также зависит от количества людей и времени, на протяжении которого они находятся в них.

Кроме того, расчет воздухообмена зависит от мощности вентилятора и давления воздуха, которое он создает; диаметра воздуховодов и их протяженности; наличия рециркуляции, рекуперации, приточно-вытяжной вентиляции или системы кондиционирования.

Чтобы грамотно обустроить вентиляционную систему, сначала нужно определить, какова потребность помещения в полном воздухообмене на протяжении 1 часа. Для этого используются показатели так называемой кратности воздухообмена. Эти постоянные показатели установлены в результате исследований и соответствуют различным видам помещений.

Так, например, кратность воздухообмена на 1 м² кладовой комнаты – 1 м³ в час; жилой комнаты – 3 м³/ч; погреба – 4-6 м³/ч; кухни – 6-8 м³/ч; туалета – 8-10 м³/ч. Если брать большие помещения, то эти показатели составляют: для универсама – 1,5-3 м³ на одного человека; школьного класса – 3-8 м³; кафе, ресторана – 8-11 м³; конференц- кино- или театрального зала – 20-40 м³.

Для вычислений используется формула:

где L – объем воздуха для полного воздухообмена (м³/ч); V – объем помещения (м³); Kr – кратность воздухообмена. Объем помещения определяется умножением его длины, ширины и высоты в метрах. Показатель кратности воздухообмена выбирается из соответствующих таблиц.


Таблица расчета пропускной способности воздуховода.

Аналогичный расчет можно сделать и по другой формуле, в которой учитываются нормативы воздуха на 1 человека:

где L – объем воздуха для полного воздухообмена (м³/ч); L1 – нормативное его количество на 1 человека; NL – число людей, находящихся в помещении.

Нормативы воздуха на 1 человека таковы: 20 м³/ч – при слабой физической подвижности; 45 м³/ч – при легкой физической активности; 60 м³/ч – при тяжелых физических нагрузках.

Простой способ расчета скорости воздуха в воздуховоде

Для расчета величины скорости воздуха нужно объем перемещаемого воздуха в м3/ч разделить на 3600 (количество секунд в часе) и разделить на площадь сечения воздуховода, либо введите значения в поля ниже.

Примеры расчета скорости воздуха в квадратном воздуховоде

Пример № 1 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,2 = 0,69 м/с

Пример № 2 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,2 = 3,47 м/с

Примеры расчета скорости воздуха воздуховоде прямоугольного сечения

Пример № 3 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод прямоугольный 200 мм на 400 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,4 = 0,35 м/с

Пример № 4 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 400 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,4 = 1,74 м/с

Пример № 5 расчета скорости воздуха:

  • объем перемещаемого воздуха = 1000 м3
  • воздуховод квадратный 200 мм на 400 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,4 = 3,47 м/с

Примеры расчета скорости воздуха воздуховоде круглого сечения

Пример № 6 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод круглый диаметром 200 мм

Скорость воздуха равна 100 / 3600 / (3,14 * 0,2 * 0,2/4) = 0,88 м/с

Пример № 7 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод круглый диаметром 300 мм

Скорость воздуха равна 500 / 3600 / (3,14 * 0,3 * 0,3/4) = 1,96 м/с

Пример № 8 расчета скорости воздуха:

  • объем перемещаемого воздуха = 1000 м3
  • воздуховод круглый диаметром 400 мм

Скорость воздуха равна 1000 / 3600 / (3,14 * 0,4 * 0,4/4) = 2,21 м/с

Расчёт системы вентиляции

Этот материал любезно предоставлен моим другом — Spirit’ом.

Согласно санитарным нормам, система вентиляции должна обеспечивать замену воздуха в помещении за один час, это значит что за час в помещение должен поступить и удалиться из него объём воздуха, равный объёму помещения. Поэтому первым шагом мы считаем этот объём, перемножив площадь помещения на высоту потолков. Если у вас допустим помещение площадью 40 м2 с высотой потолков 2.5м, то его объём будет 40*2.5=100 м3. Значит производительность приточной и вытяжной систем должны быть по 100 м3/ч. Это минимальный расход, я рекомендую вдвое больше. Ищете вентилятор с такой производительностью, а лучше ещё больше, потому что производительность указывается при условии отсутствия противодавления, а когда вы поставите в приточную систему фильтр, противодавление появится и уменьшит производительность. Если у вас производительность 200 м3/ч, то в трубе 125мм примерная скорость потока будет 4.5 м/с, в трубе 100 мм — 6.5 м/с, а в трубе 160мм – чуть меньше 3 м/с. Считается, что комфортная скорость воздуха для человека – до 2 м/с. Если у вас есть анемометр, то зная эти цифры вы можете проверить производительность системы вентиляции.

Далее, допустим вы хотите поставить в приточный канал нагреватель. С помощью четвёртой таблицы вы можете определить его мощность. Допустим на улице -10°С, а вам хочется чтобы в помещении было +20°С, значит разница температур 30°С. Находим строчку 200 м3/ч, смотрим пересечение столбца 30°С, получаем мощность 2010 Вт. Понятно, что это при отсутствии других источников тепла, так что в реале потребуется существенно меньше.

Следующий момент – расчёт влажности. В тёплом воздухе помещается больше воды, чем в холодном. Поэтому при нагревании его влажность уменьшается, а при охлаждении увеличивается. Допустим у нас за бортом -10°С при 80% влажности, а в помещении воздух нагревается до +20°С. Содержание воды в одном кубометре 2.1*0.8=1.68 г/м3, а влажность нагретого воздуха получится 1.68/17.3=0.097 то есть примерно 10%. Сколько же надо испарить воды, чтобы получить влажность, допустим, 50% при расходе 200 м3/ч?

Ответ: 200*(17.3*0.5-1.68)=1394 г/ч=1.4 кг/ч

Сечения и расходы

Диаметр круга, см Площадь, м2 Относительно круга 10см Габариты, см Площадь, м2 Относительно круга 10см
10 0.00785 1 12х6 0.0072 0.92
12.5 0.0123 1.57 20х6 0.012 1.53
15 0.0177 2.26 30×20 0.06 7.64
16 0.020096 2.56 40×20 0.08 10.19
20 0.0314 4 50×25 0.125 15.92
25 0.0491 6.26 50×30 0.15 19.1
30 0.0707 9 60×30 0.18 22.93
40 0.126 16
50 0.196 24.97

Расход воздуха, м3 в час (без учёта турбулентностей)

Диаметр круглого сечения,см Скорость потока
0.5 1 1.5 2 2.5 3 4 5 6 8 10
10 14.1 28.3 42.4 56.6 70.7 84.8 113 141 170 226 283
12.5 22.1 44.2 66.3 88.4 110 132 177 221 265 353 442
15 31.8 63.6 95.4 127 159 191 254 318 382 509 636
16 36.2 72.3 108.5 144.7 180.9 217 289 362 434 579 724
20 56.6 113 170 226 283 339 452 565 678 904 1130
25 88.4 177 265 353 442 530 707 883 1060 1413 1770
30 127 255 382 509 635 763 1017 1272 1526 2035 2550
40 226 452 679 905 1130 1357 1809 2261 2713 3617 4520
50 353 707 1060 1414 1766 2120 2826 3533 4239 5652 7070

В 1 часе 60*60=3600 секунд.

Площадь круга S=pr2=pd2/4

S=0.0000785*r2 m W:=3600*S*V;

Габариты воздуховода,см Скорость потока
0.5 1 1.5 2 2.5 3 4 5 6 8 10
12х6 13 26 39 52 65 78 104 130 156 207 260
20х6 21.6 43.2 64.8 86.4 108 130 173 216 259 346 432
30×20 108 216 324 432 540 648 864 1080 1296 1728 2160
40×20 144 288 432 576 720 864 1152 1440 1728 2304 2880
50×25
50×30
60×30

Тепловая мощность, затрачиваемая на подогрев приточного воздуха, Вт

м3/ч

Зависимость количества воды в воздухе от температуры

(атмосферное давление, 100% влажность)

t(°С) -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100
f max (г/м³) 0.29 0.81 2.1 4.8 9.4 17.3 30.4 51.1 83.0 130 198 293 423 598

Метки: 220, Вентиляция

Обсуждение: 2 комментария

    None:
    5 сентября 2021 в 12:22

Информация взята с каталога вытяжек BEST

5 сентября 2021 в 12:17

Для правильного подбора мощности вытяжки необходимо руководствоваться объемом Вашего помещения. Чтобы выбрать оптимальную вытяжку для Вашей кухни, ум- ножьте объем помещения на 12. Например, ширина кухни — 3 м, длина – 5 м, высота потолка — 2,7 м. Объем помещения — 40, 5 м. Для оптимального обновления воздуха на кухне необходима вытяжка мощностью не менее 480 м3/ч (40,5 x 12 = 486). Если Вы часто готовите рыбу, мясо, тушите или производите другие действия, при которых выделяется большое количество пара, советуем выбрать вытяжку с более высокой производительностью.

Ваш комментарий Отменить ответ

Готовые таблицы определения скорости воздуха в воздуховоде

Для определения расчетной скорости воздуха в воздуховодах можно использовать готовые таблицы. Такие таблицы не сложно найти в открытых источниках информации. Скоростные характеристики важны для расчета эффективности работы системы вентиляции.

Таблица расчета скорости течения воздуха в круглом воздуховоде.

Таблица расчета скорости течения воздуха в прямоугольном воздуховоде.

О вентиляции

Как вообще устроена вентиляция жилого помещения? И почему вентиляционные отверстия делаются под потолком? И что такого, что выход от вытяжки установили в этом отверстии?

Ответим по порядку:

  1. Тёплый воздух поднимается вверх (вспоминаем учебник физики 6 класса или естествознания 4 класса), другими словами, «всплывает» над менее тёплым. На его место из разных щелей приходит воздух с меньшей температурой и большей плотностью. Вот так и меняется он в жилище.
  2. Как раз поэтому отверстия для вентиляции расположены по возможности выше. Чтобы более нагретый воздух беспрепятственно покидал вашу квартиру.
  3. «Запечатав» вентиляционное отверстие арматурой вытяжки, вы тем самым закрыли канал установленной при строительстве дома вентиляции для воздухообмена в кухне.

Почему вытяжка не заменит вентиляцию

Вы скажете, что купольный раструб вытяжки большой и открытый. Думаете, что и забор воздуха у него повыше, чем у крохотного вентиляционного отверстия. Отнюдь – ответим мы. Почему?

  • Во-первых, вытяжка забирает только тот воздух, который находится ниже неё. Посмотрите, сколько пространства находится над ней. Для неё это «мёртвая зона».
  • Во-вторых, зона забора не дальше размера его отверстия. Любое всасывающее воздух устройство эффективно забирает воздух не далее диаметра входного отверстия. Попробуйте пошевелить пушинку самым мощным пылесосом с расстояния в 1 метр. Занятие бесполезное, если пытаетесь сделать это стандартными насадками с максимальным диаметром 4-5 см. Вытяжка не зря устанавливается прямо над плитой. Очень горячий воздух сам идёт в её раструб. Не потому, что стремится туда, а потому, что у вытяжки заборное отверстие находится прямо над ней и на кратчайшем расстоянии. Засасывающий эффект проявляется только в непосредственной близости заборного отверстия. Можете быть уверены, что из переносной плиты, стоящей не под вытяжкой непосредственно, ни молекулы из испарений в неё не попадёт.
  • В-третьих, любой воздуховод имеет так называемое аэродинамическое сопротивление. И чем больше колен, задвижек, зауженностей и нестыковок в вентиляционном канале, тем сопротивление его выше. Про шахту в кирпичной кладке и говорить нечего. Она и вовсе может быть забита строительным мусором. Никакие вентиляторы не смогут прогнать через воздуховод воздуха столько, сколько захочется.

Рекомендуемая скорость воздуха в вентиляционных воздуховодах

Скорость движения воздушных масс в каналах не ограничивается и не нормируется, ее следует принимать по результатам расчета, руководствуясь соображениями экономической целесообразности.

Рекомендуемая скорость воздуха для различных систем вентиляции:

  • для общеобменных систем вентиляции с сечением воздуховодов до 600×600 — менее 4 м/с;
  • для систем вентиляции с сечением воздуховодов более 600×600 — менее 6 м/с;
  • для систем дымоудаления и специфических систем вентиляции — менее 10 м/с..

Правильный расчет скорости воздуха позволяет построить эффективную систему вентиляции!

Формулы расчета скорости воздуха в воздуховоде

Устанавливая вентиляцию, специалисты особое внимание уделяют объему свежего воздуха, который поступает по каналам. Чтобы выполнить расчет скорости воздуха в воздуховоде, а также определить его количество и расход, необходимо применять определенные формулы. Они не являются сложными, поэтому доступны для использования даже неспециалистам.

Описание вентиляционной системы

Воздуховоды — это определенные элементы вентиляционной системы, которые имеют разные формы сечения и изготавливаются из различных материалов. Чтобы произвести оптимальные вычисления, потребуется учитывать все габариты отдельных элементов, а также двух дополнительных параметров, таких как объем обмена воздуха и его скорость в сечении воздуховода.

Главная функция вентиляционной системы — сохранность воздушного баланса и благоприятного микроклимата. Это означает, что воздух, которым дышит человек, не будет содержать в себе избыточной влаги, тепла и загрязнений.

Нарушение вентиляционной системы может привести к различным заболеваниям дыхательной системы и значительно снизить сопротивляемость иммунной системы. Также избыток влаги может привести к развитию болезнетворных бактерий и появлению грибка. Поэтому при установке вентиляции в домах и учреждениях применяются следующие правила:

  1. В каждом помещении необходима установка системы вентиляции.
  2. Важно соблюдать гигиенические нормы воздуха.
  3. В местах различного функционального предназначения требуются разные схемы оборудования системы вентиляции.

В данном видео рассмотрим лучшее совмещение вытяжки и вентиляции:

Чтобы все требования были выполнены, необходимо произвести правильные расчеты и подобрать нужное оборудование для поступления воздушного потока (воздуховоды и другие приборы).

Правила вычислений

Шум и вибрация находятся в тесной взаимосвязи со скоростью воздушных масс в вентиляционном канале. Ведь поток, который проходит по трубам, способен создавать переменное давление, способное превышать нормальные параметры, если количество поворотов и изгибов больше оптимальных значений. Когда сопротивление в каналах большое, скорость воздуха существенно меньше, а экономичность вентиляторов выше.

Многие факторы влияют на порог вибрации, например – материал трубы

Стандартные нормы уровня шумов

В СНиПе указываются определенные нормативы, которые затрагивают помещения жилого, общественного или производственного типа. Все стандарты указываются в таблицах. Если принятые нормы увеличены, значит, вентиляционная система спроектирована не должным образом. Кроме этого, превышение нормы звукового давления допустимо, но лишь на короткое время.

Насколько эффективно будут работать вентиляторы, зависит от уровня вибрации. Размер воздуховода, качество прокладок, материал, из которого изготовлены трубы, — все это влияет на порог вибрации.

Если предельно допустимые значения превышены, значит, система каналов создана с какими-либо недочетами, которые в ближайшем времени должны быть исправлены. Мощность вентилятора также способна влиять на превышение показателей уровня вибрации. Максимальная скорость воздуха в воздуховоде не должна способствовать росту шумов.

Принципы оценки

Для изготовления вентиляционных труб применяют разные материалы, самыми распространенными из которых считаются пластиковые и металлические трубы. Формы воздуховодов имеют различные сечения, начиная от круглых и прямоугольных и заканчивая эллипсоидными. СНиП может указывать только размеры вытяжных труб, но никак не нормировать объем воздушных масс, поскольку вид и назначение помещений могут значительно отличаться. Прописанные нормы предназначены для социальных объектов — школ, дошкольных учреждений, больниц и т.д.

Все габариты вычисляются благодаря определенным формулам. Нет определенных правил, позволяющих вычислять скорость воздуха в воздуховодах, но существуют рекомендуемые стандарты для необходимого расчета, которые можно увидеть в СНиПах. Все данные используются в виде таблиц.

Дополнять приведенные данные можно таким способом: если вытяжка естественная, то скорость движения воздуха не должна превышать 2 м/с и быть меньше 0,2 м/с, иначе обновляться воздушные потоки в комнате будут плохо. Если же вентиляция принудительная, то максимально допустимое значение составляет 8-11 м/с для магистральных воздуховодов. Если этот стандарт будет выше, то давление в вентиляции получится очень большим, что приведет к неприемлемой вибрации и шуму.

Формулы для расчётов

Для выполнения вычислений нужно иметь некоторые сведения. Чтобы произвести расчет скорости потока воздуха в воздуховоде, требуется применение формулы ϑ = L / 3600 × F, где:

  • ϑ — скорость воздушных масс в воздуховоде;
  • L — расход воздуха на определенном участке, для которого делаются расчеты (измеряется в м³ ч);
  • F — площадь канала воздушных проходов (измеряется в м²).

Чтобы вычислить расход воздуха, вышеуказанную формулу можно видоизменить, получив L = 3600 × F × ϑ.

Но существуют обстоятельства, когда провести такие расчеты трудно или попросту нет на это времени. В таких ситуациях на помощь приходит специальный калькулятор расчета скорости воздуха в воздуховоде.

В инженерных бюро чаще всего используют калькуляторы, которые наиболее точны. Например, они добавляют больше цифр в число Пи, точнее рассчитывают затрату воздуха, вычисляют толщину стен прохода и т.д.

Благодаря расчетам скорости в воздуховоде мы сможем точно произвести вычисления не только количества подачи воздуха, но и узнать динамическое давление на стенки каналов, затраты через трение, динамическое сопротивление и т.д.

Полезные советы и примечания

Делая выводы по формулам или проводя вычисления в онлайн-калькуляторе, можно рассчитать, что скорость воздушных масс в сечении труб напрямую зависит от их габаритов. Чем меньше диаметр труб, тем больше будет скорость воздуха. Благодаря этому мы можем выявить несколько важных моментов:

  1. Строить воздуховоды небольших габаритов гораздо проще и удобней.
  2. Трубы малого диаметра стоят значительно дешевле, а цены на дополнительное оборудование (затворы и клапаны) снижаются.
  3. Расширение гибкости монтажа. Появляется возможность располагать воздуховоды, как требуется, поэтому подстраиваться под обстоятельства практически не приходится

Но при установке воздуховода малого диаметра важно помнить, что высокая скорость воздуха будет повышать давление на стены труб, а также сопротивление системы. Следовательно, понадобится вентилятор высокой мощности и возникнет потребность в других дополнительных элементах. Поэтому при работе с вентиляцией важно точно произвести все вычисления, чтобы экономия не привела к еще большим расходам или убыткам. Если строение не будет соответствовать вентиляционным стандартам СНиП, то его попросту не допустят к эксплуатации.

Определение скорости воздуха в воздуховоде

Для разработки будущей системы вентиляции немаловажно определиться с габаритами каналов, которые нужно проложить в тех или иных условиях. Во вновь строящемся здании это сделать проще, еще на стадии проектирования расположив все инженерные сети и технологическое оборудование в соответствии с нормативными документами. Другое дело, когда идет реконструкция или техническое перевооружение производства, тут требуется прокладка трасс воздуховодов с учетом существующих условий. Размеры каналов могут сыграть большую роль, а чтобы их правильно вычислить, необходимо принять оптимальную скорость движения воздуха.

Таблица скорость воздуха в воздуховоде.

Порядок выполнения расчета

Имеется еще один вариант устройства приточно-вытяжной вентиляции с механическим побуждением. Заключается он в том, чтобы использовать существующие воздухопроводы для новых вентиляционных установок. Тут также не обойтись без просчета скорости потока в этих старых трубопроводах на основании обследований и измерений.

Общая формула расчета величины скорости воздушных масс (V, м/с) происходит из формулы вычисления расхода приточного воздуха (L, м.куб/ч) в зависимости от размера площади сечения канала (F, м.кв.):

L = 3600 x F x V

Примечание: умножение на цифру 3600 необходимо для приведения в соответствие единиц времени (часы и секунды).

Процесс замера скорости воздуха.

Соответственно, формулу скорости потока можно представить в следующем виде:

Рассчитать площадь сечения существующего канала не составляет труда, а если ее нужно вычислить? Тогда и приходит на помощь способ подбора размеров воздуховода по рекомендуемым скоростям воздушных потоков. Изначально из трех параметров, участвующих в расчетах, на данном этапе четко должен быть известен один – это количество воздушной смеси (L, м.куб/ч), необходимое для вентиляции того или иного помещения. Оно определяется в соответствии с нормативной базой в зависимости от назначения строения и его внутренних комнат. Выполняется расчет по числу людей в каждом помещении или по величине выделяющихся вредных веществ, излишков тепла или влаги. После этого нужно принять предварительное значение скорости воздуха в воздуховодах, сделать это можно воспользовавшись таблицей рекомендуемых скоростей.

Тип воздухопровода Основная магистраль Разводящие каналы Распределение по помещению Раздающие приточные устройства Вытяжные панели, зонты, решетки
Рекомендуемая скорость 6 – 8 м/с 4 – 5 м/с 1,5 – 2 м/с 1 – 3 м/с 1,5 – 3 м/с

Подбор габаритов канала

Выбрав вид воздухопровода и приняв расчетную скорость, можно определить сечение будущего канала по формулам, приведенным выше. Если планируется его изготовить круглой формы, то диаметр посчитать просто:

Расчет воздуховодов для равномерной раздачи воздуха.

  • D – диаметр круглого канала в метрах;
  • F – площадь его поперечного сечения в м.кв.;
  • π = 3.14

Далее необходимо обратиться к нормативным документам, которые определяют стандартные размеры воздуховодов круглой формы, и выбрать среди них ближайший к расчетному диаметр. Это делается для того, чтобы унифицировать производство элементов вентиляционных систем, номенклатура изделий которых и так достаточно велика. Понятно, что принятый по СНиП новый диаметр будет иметь и другое сечение, поэтому потребуется пересчитать его в обратной последовательности и выйти на значение действительной скорости потока воздушных масс в стандартном канале. При этом величина расхода L по-прежнему должна участвовать в вычислениях как константа. Таким методом просчитывается каждый отдельно взятый участок вентиляционной системы, а разбивка на участки производится по одному неизменному признаку – количеству воздуха (расходу).

Если предполагается выполнить прокладку каналов прямоугольной конфигурации, то нужно подобрать размеры сторон такими, чтобы их произведение дало площадь сечения, которая была вычислена ранее. Нормативное ограничение к таким каналам одно:

Здесь параметры А и В – размеры сторон в метрах. Простыми словами, нормами запрещается выполнять прямоугольные трубопроводы слишком узкими при большой высоте или чересчур низкими и широкими. На таких участках сопротивление потоку будет слишком большим и вызовет экономически необоснованные энергозатраты. Остальной просчет действительной скорости воздуха в воздуховоде производится так, как было описано выше.

Рекомендации по подбору в стесненных условиях

При разработке вентиляционных схем нужно руководствоваться одним правилом, которое просматривается и в таблице: скорость воздуха на каждом участке системы должна возрастать по мере приближения к вентиляционной установке. Если результаты вычислений дают показатели скоростей на каких-нибудь участках, не соответствующие данному правилу, то такая схема работать не будет или же в реальных условиях величины скорости потоков будут далеки от расчетных. Решить вопрос можно изменением размеров воздухопроводов на проблемных участках в сторону уменьшения или увеличения.

Формула определения воздухообмена по кратности.

При выполнении строительных работ по реконструкции или техническому перевооружению производственных зданий часто возникает ситуация, когда для устройства вентиляционных каналов просто не остается свободного места, поскольку насыщенность технологическим оборудованием и трубопроводами в помещении слишком велика. Тогда приходится прокладывать трассы в самых труднодоступных местах либо пересекать перекрытия и стены несколько раз. Все эти факторы могут значительно увеличить сопротивление таких участков. Получается замкнутый круг: чтобы пройти узкие места, нужно уменьшить размер и увеличить скорость, что резко повысит сопротивление участка. Уменьшить скорость воздуха нельзя, потому что тогда увеличатся габариты канала и он не пройдет где нужно. Выход из ситуации заключается в уменьшении габаритов и наращивании мощности вентилятора либо разветвлении воздухопровода на несколько параллельных рукавов.

Если возникает необходимость просчета существующей системы приточных или вытяжных каналов для использования их с другими параметрами производительности по воздуху, то вначале потребуется снять натурные замеры каждого участка воздуховода с разными габаритами. Затем, используя новые значения расходов воздуха, определить действительную скорость потока и сравнить полученные значения с таблицей. На практике допускается превышение рекомендованных скоростей на 3-5 м/с в магистральных, разводящих каналах и ответвлениях. В приточных и вытяжных устройствах увеличение скорости приводит к повышению уровня шума, поэтому недопустимо. Если эти условия соблюдаются, старые воздухопроводы пригодны к использованию после соответствующего их обслуживания.

Правильность всех выполненных расчетов вентиляционной системы покажут пусконаладочные работы, в процессе которых производятся замеры скорости воздуха в каналах через специальные лючки.

Также с помощью измерительных приборов – анемометров – измеряется скорость потока на входе или выходе вентиляционных решеток. Если показатели не соответствуют расчетным, выполняется регулировка всей системы с помощью устанавливаемых дополнительно дроссельных заслонок или диафрагм.

Скорость воздуха в воздуховоде: расчеты и измерения

Любая вентиляционная сеть состоит из каналов, оборудования и фасонных элементов. Для создания необходимого воздухообмена, важным параметром является не только производительность приточно-вытяжных установок и конфигурация сети, но и аэродинамический расчет воздуховодов.

  1. Материал и форма сечения
  2. Особенности перемещения газов
  3. Порядок проведения вычислений
  4. Методика расчетов
  5. Вычисление потерь на трение
  6. Настройка действующей системы вентиляции

Материал и форма сечения

Первое, что делается еще на этапе подготовки к проектированию – это подбирается материал для воздухопроводов, их форма, ведь при трении газов о стенки канала создается сопротивление их движению. Каждый материал имеет разную шероховатость внутренней поверхности, и следовательно при выборе воздуховодов будут различными показатели сопротивления движению воздушного потока.

В зависимости от специфики монтажа, качества воздушной смеси, которое будет перемещаться по системе и бюджету на проведение работ, выбирают нержавеющие, пластиковые или стальные каналы с оцинкованным покрытием, круглого или прямоугольного сечения.

Прямоугольными трубами пользуются, чаще всего, для сохранения полезного пространства. Круглые, напротив, достаточно громоздки, но имеют лучшие аэродинамические показатели и как следствие, шумность конструкции. Для правильного построения вентиляционной сети важными параметрами являются: площадь сечения воздухопроводов, расход воздуха и его скорость при движении по каналу.

На объем перемещаемых воздушных масс форма влияния не оказывает.

Особенности перемещения газов

Как уже говорилось выше, в расчетах, проводимых при построении вентиляции, участвуют три параметра: расход и скорость воздушных масс, а также площадь сечения воздухопроводов. Из этих параметров только один нормируется – это площадь сечения. Кроме жилых помещений и детских учреждений, допустимую скорость воздуха в воздуховоде СНиП не регламентирует.

В справочной литературе существуют рекомендации по перемещению газов, протекающих по вентиляционным сетям. Величины рекомендованы исходя из назначения, конкретных условий, возможных потерь давления и показателей шума. Таблица отражает рекомендованные данные для принудительных систем вентиляции.

Для естественного проветривания, движения газов принимается со значениями 0,2 – 1 м/с.

Порядок проведения вычислений

Алгоритм проведения вычислений таков:

  • Составляется аксонометрическая схема с перечислением всех элементов.
  • На основании схемы проводится расчет протяженности каналов.
  • Определяется расход на каждом ее участке. Каждый отдельный участок имеет единое сечение воздухопроводов.
  • После этого, проводятся вычисления скорости перемещения воздуха и давления в каждом отдельном участке системы.
  • Далее, вычисляются потери на трение.
  • Используя нужный коэффициент, вычисляется потери давления на местные сопротивления.

В процессе вычислений, на каждом участке воздухораспределительной сети получатся различные данные, которые необходимо уравнять с веткой наибольшего сопротивления при помощи диафрагм.

Методика расчетов

Изначально необходимо сделать расчет необходимой площади сечения воздуховода исходя из данных по ее расходу.

  • Площадь сечения воздуховода рассчитывается по формуле

LP – данные по перемещению необходимого объема воздуха на конкретном участке.

VT – рекомендованная или допустимая скорость воздуха в воздуховоде определенного назначения.

  • Получив искомые данные, производится подбор близкого к расчетному значению типоразмеру воздухопровода. Имея новые данные, производится вычисления реальной скорости перемещения газов на участке системы вентиляции, по формуле:

LP – расход газовой смеси.

– фактическая площадь сечения выбранного воздухопровода.

Аналогичные вычисления необходимо провести для каждого отдельного участка вентиляции.

Для правильного расчета скорости воздуха в воздуховоде, необходимо учитывать потери на трение и местные сопротивления. Одним из параметров, влияющих на величину потерь, является сопротивление на трение, который зависит от шероховатости материала воздухопровода. Данные о коэффициенте трения можно найти в справочной литературе.

Вычисление потерь на трение

Прежде всего следует учитывать следует учитывать форму воздухопровода и материал, из которого он изготовлен.

  • Для круглых изделий, формула расчета выглядит так:

Pтр = (x*l/d) * (v*v*y)/2g

Х – табличный коэффициент трения (зависит от материала);

I – длина воздухопровода;

D – диаметр канала;

V – темп движения газов на определенном участке сети;

Y – плотность перемещаемых газов (определяется по таблицам);

G – 9,8 м/с 2

Важно! Если в воздухораспределительной системе используются прямоугольные каналы, то в формулу необходимо подставить эквивалентный сторонам прямоугольника (сечения воздуховода) диаметр. Вычисления можно произвести по формуле: dэкв = 2АВ/(А + В). Для перевода можно использовать и таблицу, представленную ниже.

  • Потери на местные сопротивления рассчитываются по формуле:

Q — сумма коэффициентов потерь на местные сопротивления;

V — скорость движения воздушных потоков на участке сети;

Y – плотность перемещаемых газов (определяется по таблицам);

G – 9,8 м/с 2

Важно! При построении воздухораспределительных сетей, очень важную роль играет правильный выбор дополнительных элементов, к которым относятся: решетки, фильтры, клапаны и пр. Эти элементы создают сопротивление перемещению воздушных масс. При создании проекта следует обратить внимание и на правильный подбор оборудования, ведь лопасти вентилятора и работа осушителей, увлажнителей, помимо сопротивления, создают и наибольший шум и сопротивление воздушным потокам.

Рассчитав потери воздухораспределительной системы, зная требуемые параметры движения газов на каждом ее участке, можно переходить к подбору вентиляционного оборудования и монтажу системы.

Настройка действующей системы вентиляции

Основным способом диагностики работы вентиляционных сетей является измерение скорости воздуха в воздуховоде, так как зная диаметр каналов несложно вычислить реальный расход воздушных масс. Приборы, которые используются для этого называют анемометрами. В зависимости от характеристик движения воздушных масс, применяют:

  • Механические устройства с крыльчаткой. Предел измерений 0,2 – 5 м/с;
  • Чашечные анемометры измеряют воздушный поток в пределах 1 – 20 м/с;
  • Электронные термоанемометры могут использоваться для проведения измерений в любых вентиляционных сетях.

На этих устройствах стоит остановиться более подробно. Электронные термоанемометры не требуют, как в применении аналоговых устройств, организации люков в каналах. Все измерения производятся посредством установки датчика и получении данных на экран, встроенный в прибор. Погрешности измерений у таких устройств не превышает 0,2%. Большинство современных моделей могут работать как от батареек, так и от питания 220 v. Именно поэтому для проведения пусконаладочных работ, профессионалы рекомендуют использовать именно электронные анемометры.

В качестве заключения: скорость движения воздушных потоков, расход воздуха и площадь сечения каналов являются важнейшими параметрами для проектирования воздухораспределительных и вентиляционных сетей.

Совет: В данной статье, в качестве наглядного примера была приведена методика аэродинамического расчета для участка воздухопровода вентиляционной системы. Проведение вычислительных операций – это достаточно сложный процесс, требующий знаний и опыта, а также учитывающий массу нюансов. Не занимайтесь расчетами самостоятельно, а доверьте это профессионалам.

Ссылка на основную публикацию