Закрыть рекламу ×
Закрыть рекламу ×

Пеностекло утеплитель: достоинства и недостатки материала, характеристики

Пеностекло: преимущества, недостатки, технология утепления материалом

Пеностекло относится к долговечным, прочным и популярным материалам для утепления. Оно отличается простотой монтажа и высокой эффективностью. Технология была изобретена почти век назад в СССР, а практическое применение придумали позже в Канаде. Массово на рынке строительных материалов пеностекло появилось недавно, когда технология его производства позволила сделать его доступным и качественным. Перед использованием стоит рассмотреть, что такое гранулы или плиты из пеностекла, их основные преимущества и недостатки, а также методы использования для утепления.

Описание и виды пеностекла

Пеностекло сочетает в себе преимущества сразу двух материалом. Оно сочетает в себе силикатное стекло, которое отличается прочностью и хрупкостью, а также пены – невероятно легкого материала. Производство пеностекла заключается в нагревании силикатной массы с добавлением вещества, которое образует газ. Высокая температура приводит к плавлению вещества, а также образованию мелких пузырьков. Данная технология позволяет получить легкий и прочный материал, который обладает высоким показателем теплостойкости.

В сфере теплоизоляции применяется два основных вида:

  1. Плитное пеностекло. Утеплитель имеет формы плиты, которая имеет структуру с замкнутыми ячейками. Оптимально подходит для утепления цоколя, фасада, потолка, перекрытий и фундамента. Толщина составляет 6-12 см, а размер плиты составляет 45*60 см. Они выдерживают даже значительные эксплуатационные нагрузки, не дают усадки и устойчив к деформации при механическом воздействии.

  1. Гранулированный материал. Представляет собой микропористые гранулы сферической формы. Выполняется в гранулах различных размеров от 1-5 мм до 7-20 мм. Может использоваться в качестве утеплителя для внутренних стен, перекрытий и полов.

Технические характеристики двух видов материала схожи, поэтому при его выборе следует основываться только на удобстве и целесообразности использовать утеплитель той или иной формы.

Основные характеристики

По статистики, чем выше показатель твердости материала, тем ниже его теплоизоляционные свойства. Пеностекло относится к утеплителям, которые не только выдерживают серьезные нагрузки, но и обладают низким показателем теплопроводности.

К другим характеристикам материала относится:

  1. Теплопроводность. Пеностекло имеет показатель теплопроводности 0,04 Вт/м*с. Если сравнивать его с деревом, то у данного материала данный показатель в два раза ниже, а у минимальной ваты выше в среднем на 25%. Поэтому пеностекло отлично защищает от теплопотерь лучше дерева, минваты и многих других утеплителей. Высокие теплоизоляционные свойства объясняются наличием в структуру маленьких замкнутых ячеек с тонкими перегородками.
  2. Прочность. Квадратный метр утеплителя способен выдержать давление в 40-100 тонн, а показатель прочности составляет 0,5-1,2 Мпа. Данный показатель не ухудшается со временем. Однако ударная прочность у материала невысока. Пеностекло можно разбить при сильном механическом воздействии.
  3. Звукоизоляция. Пеностекло эффективно использовать не только для защиты от теплопотерь, но и от постороннего шума. Материал способен гасить звуковые волны силой в 45-56 децибел.
  4. Устойчивость к температурам. Утеплитель способен выдерживать температуру от -200 до +300 градусов, что позволяет использовать его даже при экстремальных температурах.
  5. Плотность. Это показатель у материала очень низкий и равен 100-250 кг на кубометр. А этот показатель ниже плотности дерева минимум в три раза.
  6. Паропроницаемость. Пеностекло может использоваться и в качестве пароизолятора. Показатель паропроницаемости составляет всего 0,005 мг/(м*ч*Па).
  7. Влагостойкость. Плиты и гранулы пеностекла способны поглотить не более 2% воды от собственного объема. Материал не только не впитывает влагу, но и не изменяет своих свойств при взаимодействии с ней.

  1. Биологическая устойчивость. Пеностекло обладает высоким показателем стойкости перед насекомыми, грызунами и микроорганизмами. Утеплитель не впитывает воду, поэтому в нем не образуется плесень и грибки. А высокая твердость материала защищает его от насекомых и грызунов.
  2. Химическая устойчивость. Пеностекло является химически инертным материалом. Поэтому при контакте с кислотами, щелочами, газами и нефтепродуктами пеностекло не взаимодействует. Единственным веществом, с которым взаимодействует пеностекло, является плавиковая кислота.
  3. Экологическая чистота. Пеностекло не горит, не выделяет токсических газов и не продуцирует продуктов распада. Это делает материал безопасным для утепления жилых помещений.

Уникальные характеристики материала объясняется сочетанием свойств силикатного стекла и газовых микрокапсул.

Основные преимущества

Использование пеностекла в качестве утеплителя обладает рядом значительных преимуществ. К ним относится:

  1. Отличные теплоизоляционные характеристики. Они объясняются особенностью структуры материала – маленькие замкнутые ячейки с тонкими перегородками.
  2. Универсальность. Материал является универсальным, поэтому может использоваться для утепления фасадов, кровли, фундамента, коммуникаций, стен и пола. Он может использоваться даже для объектов с высоким показателем пожароопасности.
  3. Длительный срок службы. Материал способен прослужить более 100 лет без потери эксплуатационных качеств. При этом он хорошо переносит высокие и низкие температуры, а также их резкие перепады.
  4. Хорошие звукоизоляционные свойства. Слой утеплителя в 10 см способен заглушить даже звуки работающего мотора трактора за стенкой. Поэтому материал эффективно использовать не только для защиты от теплопотерь, но и от постороннего шума.
  5. Простота монтажа. Для нарезки плит может использовать обычная ножовка, гранулы достаточно просто насыпать на подготовленные поверхности. Материал невероятно легкий, поэтому работать с ним несложно.
  6. Безопасность. Материал не выделяет опасных соединений, поэтому может использоваться в помещениях общественных и жилых помещениях.
  7. Негорючесть. Пеностекло не горит, а при очень высокой температуре только плавится, не выделяя при этом токсических компонентов и дыма.

Преимущества пеностекла сделали его одним из наиболее удачных и качественных материалов для утепления пола, крыши, перекрытий, цоколя, стен и других поверхностей.

Основные недостатки

Несмотря на явные преимущества пеностекла, при его выборе в качестве утеплителя следует учитывать и недостатки. К ним относится:

  1. Высокая стоимость. На рынке строительных материалов пеностекло является одним из наиболее дорогих утеплителей. Это связано с высокими энергозатратами при производстве. К тому же для изготовления требуется дорогое оборудование.
  2. Невысокая ударная прочность. Материал обладает высоким показателем прочности при сжатии, однако является достаточно хрупким материалом. Поэтому при сильных ударах пеностекло может потрескаться, а такие треснутые плиты уже не могут использоваться в качестве утеплителя.
  3. Низкая паропроводимость. Данное свойство материала является и его преимуществом, и недостатком. Несмотря на то, что в пеностекле не могут образовываться грибки и плесень, поверхность, которую оно покрывает, не происходит воздухообмена, поэтому могут появиться очаги заражения.

Пеностекло – высококачественный и современный утеплитель для различных видов поверхность, однако при его выборе недостатки также должны учитываться.

Подробности утепления дома пеностеклом можно узнать из видео:

Применение

Особенностью материала являются его прекрасные теплоизоляционные способности в сочетании с высокой прочностью. Поэтому его можно использовать для утепления цоколя, фундамента, несущих стен и трубопроводов. Низкий показатель водопоглащения позволяет использовать его и для теплоизоляции подвала, фундамента и цокольного этажа. Гранулированный материал может использоваться в качестве утепляющей добавки для бетона. Для теплоизоляции стен достаточно засыпать его в их полости.

Пеностекло хорошо режется и сверлится, поэтому из плит легко сделать куски нужного размера. К тому же плиты хорошо держат штукатурку, шпаклевку, клей и другие составы для отделки поверхностей.

Материал может использоваться не только для жилых и общественных помещений. Он используется для корпусов различного технологического и промышленного оборудования, которое работает при высокой температуре.

Технология утепления пеностеклом

Чтобы гарантирует высокие теплоизоляционные качества материала, требуется соблюдать технологию его монтажа:

  1. Для крепления плит рекомендуется использовать специальный клей, который необходимо нанести на обратную сторону плиты и боковые стенки. После чего клей следует равномерно распределить по поверхности листа.
  2. Если поверхность имеет ямки, выпуклости или другие неровности, клей на пеностекло следует наносить шлепками, чтобы получить максимально ровную основу.
  3. При утеплении деревянной основы рекомендуется закреплять плиты специальными дюбелями. Дерево при воздействии влаги и температуры расширяется, поэтому утеплитель к нему должен монтироваться механическим способом.
  4. При монтаже плиты на вертикальной поверхности необходимо установить нижнюю планку, используя при этом строительный уровень. В качестве планки лучше всего использовать металлический профиль или рейку.
  5. Первый ряд утеплителя следует монтировать на профиль, который будет выступать в роли опоры. После полного застывания клея опору можно удалить. Однако лучше всего удалить ее уже после полного завершения работ.
  6. При монтаже плит на вертикальных или наклонных поверхностях следует начинать снизу, а на горизонтальных – с дальнего угла.
  7. Плиты следует укладывать вплотную друг к другу со смещением одного ряда относительно другого. После нанесения и полного высыхания клея дополнительно рекомендуется укреплять плиты специальными дюбелями.
  8. Вокруг окон и дверей теплоизоляционные плиты рекомендуется монтировать цельными фигурами. На угловых линиях соединять между собой отдельные куски материала не разрешается.

Пеностекло является высококачественным, современным и очень легким материалом для теплоизоляции различных поверхностей. Грамотное следование технологии монтажа позволит повысить эффективность теплоизоляции и продлить срок службы материала.

Виды, свойства и применение пеностекла

Вопрос ускорения постройки зданий с сохранением всех необходимых свойств не дает покоя производителям строительных материалов уже довольно давно. Тут же возникала проблема долговечности традиционных материалов. И словно в ответ на все эти запросы строителей было создано пеностекло.

Виды пеностекла

Всего выделяют две большие группы: гранулированное и блочное. Каждая группа делится еще на несколько видов.

Гранулированные утеплители могут представлять собой гравий, щебень или песок. Применение каждого целесообразно в строго ограниченных рамках.

Блочные утеплители поставляются в виде плит, блоков или скорлуп. Скорлупы еще часто называют фасонным пеностеклом. Такой вид сложен в производстве, а также требует более бережного обращения. На плитах легко могут появиться сколы или трещины, которые потом станут причиной нарушения функциональности утеплителя.

По своим свойствам блочное пеностекло в составе гораздо более эффективное, чем гранулированное. Однако второе распространено, так как имеет малую стоимость. Его обычно засыпают в промежутки между стенами, а также перед настилкой полов или кровли.

Сферы применения

Пеностекло представляет отличное вещество для утепления сооружений. Оно безопасно, так что применение в общественных или жилых зданиях вполне оправдано. При его помощи можно эффективно утеплить потолок, стены или пол в строительстве. Просто закрепить блоки или засыпать гранулы, а затем закрыть все финишной отделкой.

Наибольшую популярность имеет у крупных строительных компаний. Которые создают жилье высшего качества и используют только лучшие методы. При этом они обычно заказывают большими партиями, что позволяет неплохо сэкономить.

Пеностекло способно выполнять основные функции любого строительного блока:

  • нести вес общей конструкции;
  • осуществлять теплоизоляцию, утепление помещения;
  • выполнять функцию отделки.

Дополнительно имеет высокий класс гидрофобности, что не дает проникать влаге. А это, в свою очередь, не позволяет образовываться «мостикам холода», которые могут стать причиной снижения эффективности утеплителя.

Для многоэтажных домов дает возможность уменьшить толщину стен практически в два раза. Это становится причиной уменьшения фундамента, а также всех сопутствующих расходов. Для домов малой этажности и вовсе позволяет отказаться от многослойных стен, оставив лишь один многофункциональный блок. Это значительно увеличивает скорость постройки и расширяет внутреннее пространство помещений.

Блоки открывают перед строителями невиданные возможности по застройке. Он дает возможность надстраивать этажи без усиления фундамента, а также создавать устойчивые конструкции на слабых грунтах. При этом конструкция не подвергается горению и каким-либо другим воздействиям.

Различные пожаро- и взрывоопасные производства давно оценили вещество по достоинству. Из него создаются целые цеха и склады, в которых не нужно беспокоиться о возгорании.

Помимо непосредственного использования, пеностекло входит в состав множества полезных материалов. Тут речь идет о многоразовой изоляции для трубопроводов, которая устойчива к воздействиям среды, а также к кислотам и щелочам. Не привлекает грызунов, так что может использоваться в качестве защиты разных складов с продуктами питания.

Важно! Если планируется возведение здания с повышенной влажностью или высоким температурным режимом, то пеностекло является самым предпочтительным материалом. Из него отлично строятся бани, бассейны, подвалы и многое другое. Не усаживается с течением времени и сохраняет свои свойства на долгое время.

Везде, где сейчас используют минеральную вату, можно применить пеностекло. И такое решение позволит на долгое время забыть о замене утеплителя и каких-либо проблемах с работоспособностью оборудования.

Параметры

Параметры напрямую зависят от производителя. Но наиболее распространенным видом поставки считаются плиты размером 45х60 см с толщинами 10, 12, 80 или 60 см. Это могут быть плиты с небольшой толщиной от 2 до 12 см.

Свойства

Пеностекло отличается характеристиками, которые выделяют его при сравнении с аналогами. При этом производителям удается добиться высокой долговечности и прочности даже при интенсивной эксплуатации в сложных условиях. Срок использования может достигать 100 лет, что практически совпадает со сроком использования большинства зданий.

Такая долговечность объясняется рядом технических характеристик:

  • стойкость к окислению;
  • низкая теплопроводность;
  • нет условий для развития эрозии;
  • плотность;
  • не содержит питательных сред для бактерий или грибков;
  • стойкость к перепадам температур (в частности, к замерзанию);
  • отсутствие усадки и каких-либо деформаций в ходе использования.

Пеностекло обладает свойством повышенной прочности на сжатие, которая позволяет превосходно работать в составе большой тяжелой конструкции. Химические элементы не оказывают никакого воздействия. Однако, если применить плавиковую кислоту, свойства материала могут измениться.

Важно! Насекомые или грызуны не способны пробиться сквозь блок или причинить ему вред. Поэтому материал широко применяют при возведении хранилищ. Отдельно стоит указать негорючесть материала и его полную влагонепроницаемость.

При эксплуатации в окружающую среду не выделяется никаких токсинов, даже при повышенных температурах. Экологичность и безопасность для здоровья гарантируются. Ну и отдельного упоминания заслуживает свойство, заключающееся в простоте обработки и монтажа. Детали способны легко склеиваться между собой посредством особых веществ.

Достоинства и недостатки

Описывая свойства материала, можно сделать вывод, что пеностекло – практически идеальный материал для утепления. Однако это не так. Он имеет преимущества и недостатки, которые полностью характеризуют его.

  • безопасность для человека;
  • экологическая чистота;
  • антисептические свойства гарантируют высокую защиту от бактерий;
  • большой срок службы;
  • многофункциональность;
  • можно применять при строительстве разных зданий;
  • легко соединяется с другими материалами;
  • не поддаются нападкам со стороны грызунов или насекомых;
  • отражает влагу, ультрафиолет и инфракрасные лучи;
  • стойкость к механическим деформациям;
  • абсолютная нейтральность по отношению к кислотам;
  • не горит;
  • простота обработки.

Не обошлось и без минусов, которых собралось тоже значительное количество. Пеностекло имеет следующие недостатки:

  • высокая стоимость материала, обусловленная сложностью изготовления при помощи самых последних разработок;
  • высокая хрупкость, которая может привести к появлению трещин при неправильной установке;
  • низкая паропроницаемость, которая может привести к скоплению конденсата на поверхности, прилегающей к другому материалу, который не настолько устойчив к воздействиям влаги;
  • чувствительность к щелочам, способным разрушить структуру материала;
  • большой вес;
  • долговечность может оказаться абсолютно бесполезна в том случае, если остальные слои испортятся, так как повторное применение пеностекла не предусматривается;
  • во время транспортировки необходимо уберегать материал от ударов, так как даже не сильный удар способен разрушить блок;
  • даже немного поврежденный материал уже невозможно починить, так как его механические свойства мгновенно меняются.

Далеко не идеальным оказался материал. И много людей все еще опасается использовать его в своих конструкциях. Однако соблюдение правил перевозки, установки и эксплуатации позволит исключить практически все минусы.

Обзор производителей пеностекла

Множество производителей предлагают пеностекло в наше время, но наиболее качественные материалы создаются производителями:

  • Saitax;
  • Izostek;
  • ОАО «Гомельстекло».
  • Neoporm;
  • Penostek.

Продукция этих фирм представляет собой действительно качественный строительный материал, который не расстроит даже очень дотошного покупателя.

Одной из причин медленного внедрения инновации в нашу жизнь представляется высокая стоимость материала. Далеко не все могут себе позволить потратить большую сумму на утеплитель в виде пеностекла. Цена на блоки находится в пределах от 120 до 400 долларов за кубический метр. Скорлупы можно найти за 200 долларов за кубический метр. А вот гранулированный материал считается более дешевым и за него просят всего около 50 долларов за кубометр.

Пеностекло носит звание строительного материала будущего. Оно безумно удобно для сооружения зданий. Однако имеет ряд очень весомых минусов, которые могут испортить все впечатление от применения. За удовольствие придется отдать очень значительные деньги. Развитие технологий дарит надежду, что через несколько лет себестоимость пеностекла будет снижена. Это позволит использовать его в массовом строительстве. Но и тут далеко не каждый будет готов примириться с недостатками, так что окончательный выбор остается за человеком.

Пеностекло — характеристики, достоинства и недостатки материала, область применения и особенности производства

Пеностекло — неорганический, экологически безопасный, высокопрочный и легкий утеплитель, внешне напоминающий пемзу. Химический состав пеностекла идентичен бытовому стеклу на основе оксидов кремния, калия, натрия, алюминия, магния, кальция. Пеностекло не содержит микропор, способных сорбировать влагу из окружающей среды. Вся влага, которая может задержаться в разрезанных при формовке стеклянных микросферах, стекает из материала после удаления его из воды. Поэтому для всех видов ячеистого стекла обычно наблюдается незначительная величина водопоглощения, зависящая больше от метода измерения и размера ячеек.

Самый «водопоглощающий» — пеностекольный бой, щебень. Все свойства пеностекла определяются его структурой, представляющей собой оплавленные ячейки стекла, заполненные газами. Отличия определяются величиной ячеек, наличием большего или меньшего количества свободных дефектов в перемычках между ячейками.

Виды пеностекла:

  • блоки (плиты);
  • гранулы;
  • бесформенный бой (строительный щебень).

Пеностекло (вспененное стекло, ячеистое стекло) — теплоизоляционный материал, представляющий собой вспененную стекломассуВикипедия

Как производят пеностекло

Бой стекла, вторсырье растирают с порообразователем (уголь, кокс, сажа, антрацит) и засыпают в формы, смешав с другими добавками. Форма заполняется примерно на 10%, весь объем заполнится в процессе образования стеклянной пены. Обжиг проходит в туннельной печи при температуре около 1000°С. В процессе плавки стекла порообразователь увеличивает массу в 14-15 раз и форма заполняется.

Производственная линия пеностекольных гранул

Для пеностекольных гранул технология другая: стеклобой промывают и сушат, дробят, затем мелят с вспенивателями и гранулируют шихту. Далее гранулы просушивают и помещают во вращающиеся печи, где гранулят пересыпают кварцевым песком для предотвращения спаивания. Вспенивание проходит при температуре от 780 до 820°С. Себестоимость вспененного стекла очень высока из-за энергоемкости производства и дорогого оборудования (оборудование линии на 20 м3 в сут. стоит около $1 млн.).

Блочное и плиточное пеностекло используется в качестве жесткого гидроизолирующего утеплителя. Оболочки из ячеистого стекла применяют для утепления трубопроводов. Гранулы идут на теплоизолирующую засыпку, а также используются в качестве наполнителя штукатурных растворов и легких бетонов

Свойства и характеристики пеностекла

Твердой фазы в пеностекле около 10%, поэтому оно имеет невысокую плотность. Средний диаметр пузырьков – 2000 мкм, а толщина стенок пузырьков – 20…100 мкм. Ячеистое стекло можно получать плотностью не ниже 100 кг/м3 — это предел прочности. Преимущественно производители выпускали и продолжают выпускать материал с плотностью в пределах 120-160 кг/м3. Такое пеностекло обладает высокими теплоизоляционными свойствами, сохраняя при этом приемлемые прочностные характеристики и простоту обработки. Плотность пеностекла определяет его теплопроводность и прочность. Плотность вспененного стекла очень низкая (100-250 кг/м3). Насколько это мало, вы можете судить, сравнив ее с плотностью сухой древесины (550-750 кг/м3). Неслучайно после изобретения пеностекло пытались использовать как плавающий строительный материал.

Прочность на сжатие у столь легкого вещества на удивление высока. Оно выдерживает давление до от 40 до 100 тонн на 1 м2. Остальные технические характеристики пеностекла также внушают оптимизм для всех, кто планирует его использовать.
Теплопроводность при комнатной температуре — 0,04 Вт/м*С. Даже сухая древесина хвойных пород в два раза хуже сохраняет тепло (0,09 Вт/м*С). Способность гасить звуковые волны у ячеистого стекла сравнима с минватой (45-56 дБ).

Пеностекло имеет высокую прочность

Водопоглощение блоков из пеностекла – 2% от объема. Говоря более понятным языком, они практически не впитывают воду. Паропроницаемость у них близка к нулю (0,005 мг/(м.ч.Па). Это идеальный жесткий пароизолятор. По стойкости к высокой температуре вспененное стекло также выглядит достойно. Конечно, это не шамот, но даже стандартный пористый стеклоблок выдерживает +300С без признаков разрушения. Специальные добавки поднимают термостойкость материала до +1000 С. Низких температур пеностекло не боится, выдерживая экстремальный контакт с жидким азотом (-200 С).

Самый распространенный размер плит из ячеистого стекла — 600 х 450 мм. Их толщина находится в диапазоне от 3 до 12 см (шаг 1 см)

Преимущества пеностекла

Из характеристик используемого сырья (стекла и вспенивателя) вытекают основные качества материала:

  • высокая химическая инертность (последние годы некоторые производители
  • предлагают стойкое к щелочам пеностекло);
  • исключительная долговечность при правильной эксплуатации;
  • нулевая горючесть;
  • гидро-паронепроницаемость;
  • биостойкость и высокое теплосопротивление;
  • высокая коррозионная устойчивость;
  • безусадочность — материал не дает усадку, обеспечивается долговременная
  • стабильность размеров;
  • обладает низким коэффициентом линейного температурного расширения.
  • неограниченность времени эксплуатации;
  • может использоваться при строительстве резервуаров и трубопроводов для кислот и нефтепродуктов;
  • эффективно защищает зернохранилища, хозяйственные и жилые помещений т.к. не разрушается грызунами и насекомыми;
  • возможно изготовление гранулята — являющимся незаменимым наполнителем для прочных легковесных панелей использующихся при изготовлении понтонных и иных плавучих конструкций.

Несмотря на высокую механическую прочность, вспененное стекло легко поддается обработке. Оно сверлится и режется, не образуя трещин, легко клеится и хорошо держит отделочные составы (шпаклевку и штукатурку)

Недостатки пеностекла

Есть факторы, ограничивающие применение этого утеплителя в мокрых фасадах и в качестве заполнителя легких бетонов. Ограничение связано с щелочно-силикатной реакцией, протекающей между стеклом и бетоном, цементом, всеми смесями и штукатурками, содержащими реакционноспособный оксид кремния. Основанные на цементе составы вступают в щелочную реакцию с образованием геля и отваливаются от стекла (или стекло отклеивается от фасада).

Клеить пеностекло к несущей поверхности нельзя составами, набирающими прочность в процессе просыхания из-за водо- и паронепроницаемости пеностекла — они не наберут прочность в местах соприкосновения со стеклом. Дающие усадку растворы тоже не подходят, так как разрушают ячейки стекла, с которыми вступили в адгезию и обваливаются.

Все описанные выше проблемы, являющиеся недостатками пеностекла, так или иначе решены некоторыми производителями. Блоки покрывают битумом, оклеивают разными материалами во избежание проблем с цементными составами и предотвращения механических повреждений хрупких кромок материала. Существует также метод прямой плавки, когда к стеклянному бою добавляют диоксид циркония и обеспечивают устойчивость к щелочам. Другое решение — частичная кристаллизация стекла, при которой материал уже не склонен вступать в щелочно-силикатную реакцию.

Еще один серьезный недостаток пеностекла, как материала, используемого во многих сферах, а в некоторых случаях, не имеющего достойной замены — это высокая стоимость, вот, что в первую очередь, смущает в этом материале рядовых застройщиков.
Второй недостаток – низкая ударная прочность. Его нельзя назвать критичным, поскольку утеплитель в конструкциях не испытывает ударов, а улицы пеностеклом пока еще не мостят.

Тип пор в пеностекле влияет на теплосопротивление материала. Хорошо, когда стекло имеет замкнутые ячейки по 1-2 мм. Паропроницаемое пеностекло гораздо хуже по этому показателю

Ориентировочные цены на пеностекло

Говоря о ценах на пеностекло, выделим три основные формы его выпуска. Этот материал производится в блоках, плитах, в виде фасонных изделий (объемных оболочек) и крошки (гранул и щебня). Блочный и фасонный материал имеет самую высокую стоимость. В зависимости от производителя его можно купить по цене от 9 000 до 16 000 за 1 м3. Дешевле всего крошка (фракция 0-7 мм) и щебень (8-20 мм) из вспененного стекла, поскольку они относятся к категории технологических отходов. Их можно приобрести по цене от 5 000 руб./м3. Она объясняется тем, что технология изготовления данного материала связана с высокими энергозатратами. Его отжиг (медленное охлаждение) — сложный и трудоемкий процесс. Если же оценить блоки из вспененного стекла по соотношению «цена-долговечность», то они выиграют в сравнении с аналогичными показателями других утеплителей.

Экологичность материала

Вопрос экологичности — из сульфатсодержащих стекол получается пеностекло, в ячейках которого замкнут сероводород из восстановленной серы. Он присутствует и в структуре исходного продукта в твердой фазе в виде сульфидов. Сульфиды взаимодействуют с водяным паром в воздухе и подвергаются реакции гидролиза, при которой в воздух выделяется сероводород. Последние годы брендовые производители стараются не применять такие стекла, но это влечет за собой изменения в технологической линии и повышение цены. Нужно понимать, что количество сероводорода в ячеистом стекле ничтожно и чувствуется только при разрезании блока.

Благодаря разнообразной толщине и формфакторам плит и блоков можно выбрать индивидуальный вариант, режется пеностекло пилой для газобетона

Сферы применения пеностекла

Область применения пеностекла обширна — это любые виды строительства, в пищевой и фармацевтической промышленности. Пеностекло применяется в качестве теплоизолятора в промышленном и гражданском строительстве, в т.ч термоизоляция трубопроводов и газопроводов, используется для повышение надежности и долговечности дорожного покрытия. Пеностекло эффективно используется в высотном строительстве, а также для создания огнеупорных конструкций и изоляции оборудования, работающего при температурах до 600С.

Пеностекольный утеплитель можно рассматривать в качестве засыпки при колодцевой кладке и как гидроизоляционную отмостку — в этих местах применение дорогого материала оправдано на 100%

Насыпное пеностекло применяют в колодцевой кладке и в насыпных полах, как условная альтернатива керамзиту. Однако, пеностекольный бой очень острый и режет гидроизоляционные пленки-подложки, его невозможно тромбовать. Лучше применять гранулы, тем более они с оплавленными закрытыми порами и не будут держать воду в поломанных ячейках как щебень.

Низкая плотность материала при высокой прочности позволяет снизить нагрузки на фундамент и возможность строить на слабых грунтах, надстраивать этажи к зданиям, а также снизить затраты на возведение фундамента здания. Результат применения пеностекла в строительстве — снижение расхода стройматериалов, уменьшение толщины стен здания Теплоизоляция горячих труб фигурным пеностеклом может действительно окупиться, т.к его можно применять при температурах до 550°С без необходимости регулярной замены. Материал устойчив как к пару и воздуху, так и нефтепродуктам и маслам

Утепление пеностеклом

Рекомендуемые производителями специализированные полиуретановые клеи редко бывают в розничной продаже, очень дороги и не имеют 100% аналогов. Точнее, аналоги по совместимости со стеклом есть, но они не обладают температуростойкостью и влагостойкостью рекомендуемых. Для утепления фасада здания пеностекло тяжеловато, учитывая еще ударную защиту для него (марка прочности 11). С ним непросто работать, так как материал хрупкий, хотя и имеет высокую прочность на сжатие.

Низкокачественный «аналог» пеностекла — паропроницаемое пеностекло

Современные производители предлагают так называемое паропроницаемое пеностекло, которое пеностеклом в общем понимании не является. Паропроницаемое пеностекло — это утеплитель на основе жидкого натриевого стекла с открытыми порами. Применяется исключительно внутри отапливаемых помещений. Использовать этот материал для наружного утепления не рекомендуется, т.к на фасадах естественный пар в порах промерзает, и разрывает хрупкую ячеистую структуру в песок, что в последствии может привести к обрушению утеплителя. Единственный плюс, которым производители пытаются привлечь потребителей – низкая цена на пеностекло этого типа (в 2-3 раза ниже, чем у обычного пеностекла).

Выбирайте качественный, экологически безопасный, высокопрочный и легкий утеплитель — пеностекло

История появления пеностекла на рынке

Пеностекло было представлено в 1932 году на Всесоюзной конференции по инновациям в строительстве. Представил материал легендарный физик-кристаллограф А.И. Китайгородский. К концу 30-х годов прошлого столетия патенты на производство пеностекла уже были у французов, англичан, чехов, немцев и американцев. Война затормозила исследования в этой области и первые заводы появились в СССР только в 70-ые. Тем не менее, объемы производства превышали 100000 м. куб/год и продукт пользовался спросом. Производство вспененного стекла чрезвычайно энергозатратно и сложно в контроле техпараметров, поэтому стало нерентабельно в конце 80-х — из четырех заводов остался только Гомельстекло (судя по всему, закрывший линию совсем недавно). Но за последние 5 лет в России и Украине, все-таки, наладился выпуск разнообразного пеностекла по ценам, конкурентным европейским. Есть еще проблема «аналогов»: пеностекольная крошка, перемешанная со всевозможными связующими и добавками (гипс, базальт, цемент, опилки и др), которую продают под названием пеностекло. Цена таких «изделий» может быть ниже на порядок, но они не имеют ничего общего с оригиналом.

Недостатки и достоинства пеностекла

Для утеплений зданий жилого фонда и промышленных построек широко используется пеностекло, недостатки у этого материала есть, но они не уменьшают его достоинства.

Производство материала было начато еще в СССР, когда в 30-е годы ученые заинтересовались плавучими свойствами стекла. Только потом пеностекло стало применяться в качестве утеплителя, ведь оно обладало способностью отлично удерживать тепло и поглощать звук.

Материал создавали из вспененного стекла, готовое изделие состояло из тысяч мельчайших стеклянных ячеек. Пеностекло высоко оценили инженеры, работающие в строительной отрасли. Им стали накрывать крыши, его использовали для теплоизоляции полов и стен.

Основные недостатки материала

Говоря о достоинствах материала и его недостатках, не следует забывать о том, что характеристики пеностекла заложены еще на этапе производства. Сегодня материал используют во многих странах, он не потерял своей популярности. Его уникальность заключается в том, что по своему химическому составу он идентичен обычному стеклу. Отличия есть только в способе производства. Для получения пеностекла массу предварительно вспенивают.

Так проявляется один из самых главных недостатков пеностекла. Он заключается в том, что для производства утеплителя требуется современное оборудование. Оно имеет высокую стоимость, поэтому установить такие линии может себе позволить только крупное предприятие.

Для выпуска изделий можно использовать битое стекло. Компании-производители приобретают его на предприятиях. Его перематывают в порошок, а потом насыпают в формы и направляют в цех, где и происходит плавка.

В процессе выделяются газы, именно они и заставляют расплавленное стекло вспучиваться. В результате объем массы увеличивается в 15 раз . После продукт медленно охлаждают, тогда он не трескается. Когда стекло полностью остынет, его распиливают на блоки, а потом выполняют обработку.

Здесь стоит упомянуть еще один недостаток материала. Пеностекло отличается хрупкостью. Монтажом блоков или плит должны заниматься строители, имеющие большой опыт работы. Если технология укладки будет нарушена, то покрытие может растрескаться.

Если посмотреть на состав блоков, то они состоят из множества ячеек. Внутри каждой содержится газ, его давление намного ниже атмосферного. Это позволяет материалу выдерживать большие нагрузки.

Предприятия выпускают плитное пеностекло, есть и изделия в блоках. В продаже имеется продукция в гранулах. Стоит отметить, что из-за высокой стоимости материала потребитель скорее предпочтет более дешевые утеплители. Возможно, они уступают пеностеклу по своим характеристикам, но выигрывают по стоимости. Высокая цена на изделия – это третий недостаток.

Чем отличается выпуск гранул и блоков

Сегодня при строительстве объектов требуется качественная теплоизоляция. С этой задачей успешно справится пеностекло. Предприятия предлагают потребителям блочное пеностекло и в гранулах.

Блочное представлено фасонными изделиями и блоками. Кроме того, в эту группу входят и плиты. Гранулированный материал представлен в виде следующих материалов:

  • песок из пеностекла;
  • гравий;
  • щебень.

Производство блоков кардинально отличается от выпуска гранулированного пеностекла. Если рассмотреть технологию выпуска блочных материалов, то в основе лежит соединение битого стекла с производными газами. В процессе плавки при 1000º газообразователем является уголь. В результате образуется пеностекло, имеющее замкнутые ячейки. Оно плавится, а газы нужны для того, чтобы вспенивать массу. Она равномерно растекается по форме, а потом застывает при медленном охлаждении.

В результате формируется материал, который можно использовать для утепления любых объектов. Но нужно учесть, что блоки имеют большую массу. Решив использовать при строительстве этот материал, важно правильно рассчитать прочность несущих конструкций здания. Это четвертый недостаток пеностекла. Если объект, например, частный дом, не предусматривает надежного основания и прочных перекрытий, то безопаснее выбрать другой утеплитель.

Выпуск гранулированных материалов требует измельчения сырья. Плавка осуществляется при температуре 800º. Для производства стекло варят из кварцевого песка. Его смешивают с сульфатом натрия, добавляют соду, не обходится и без известняка.

Недостатки и достоинства материала

Любой строительный материал или утеплитель имеет свои достоинства. У пеностекла их очень много, но не следует забывать и о недостатках. К ним можно отнести небольшую прочность. При ударе ячейки деформируются, способность удерживать тепло уменьшается. Кроме того, если блок имеет повреждения, то через него к стенам может просочиться влага. Это 5 отрицательный момент.

Пеностекло не боится грибка, даже при высокой влажности среды на материале не появится плесень. А вот стена под блоками может быть подвергнута заражению.

Пеностекло боится щелочей, оно не устоит и перед плавиковой кислотой. Но вряд ли это можно назвать недостатком материла, ведь в обычных условиях эксплуатации здания такие вещества не попадут на стены.

Нужно внимательно выбирать утеплитель, если элементы здания сжимаются и растягиваются под действием нагрузок. Пеностекло не подвержено растяжению, оно стабильно сохраняет форму, не сжимаясь. Это свойство материала может привести к растрескиванию конструкции, если будут подвижки потолка, стен и других частей.

Изделия следует защищать от ударных нагрузок. Например, если блок треснул, то его нельзя устанавливать. Даже склеивание цементным раствором не спасет стену от влаги.

Изделия при правильной эксплуатации будут служить очень долго. Но это несомненное достоинство переходит в недостаток, если речь идет о пеностекле. Все дело в том, что при капитальном ремонте объекта или демонтаже частей конструкции блоки могут быть легко повреждены. Демонтаж плит из пеностекла потребует больших затрат труда и средств. Из-за этого использование плит для утепления объектов будет неоправданно дорогим.

Даже учитывая это, строители используют стеклянный материал, ведь его достоинства перекрывают недостатки.

Где может быть использован материал

В современном мире большое значение имеет энергосбережение. Оно связано с ростом цен на энергоносители, именно поэтому сокращение теплопотерь стало решающим фактором при выборе строительных материалов.

Современные требования к теплоизоляционным материалам многообразны, но среди самых важных можно выделить следующие:

  1. Плиты из пеностекла безопасны для человека и окружающей среды.
  2. Быстрое восстановление формы после завершения монтажных работ.
  3. Прочность при нагрузке. Стойкость к ударам.
  4. Отсутствие больших затрат труда при выполнении укладки материала.
  5. Низкий коэффициент теплопроводности. Материал должен хорошо удерживать тепло.
  6. Долговечность.
  7. Устойчивость к высоким температурам. Пожаробезопасность.

Пеностекло удовлетворяет многим требованиям, но по ряду других характеристик материал можно заменить другим утеплителем. Говоря о недостатках газостекла, стоит упомянуть и о его достоинствах.

Блоки выдерживают значительные перепады температур, поэтому их можно использовать в суровом климате. Поскольку в составе материала нет веществ, которые бы могли вымыться вместе с водой, плиты не подвержены эрозии. Они не окисляются, ведь в составе продукции нет оксидов.

Если сравнивать утеплители по прочности, то пеностекло в несколько раз крепче пенопласта. Из-за этого материал не нужно дополнительно фиксировать креплениями.

Пеностекло не меняет размеров, по этому показателю оно схоже с кирпичом и бетоном. Плиты и блоки могут быть использованы для внутренней отделки овощехранилищ и зернохранилищ.

Материал экологичен и совершенно безопасен для человека. При пожаре, когда температура превышает 1000º, пеностекло плавится, но вредных веществ оно не выделяет.

Пеностекло имеет практически нулевую паропроницаемость. В ряде случаев это достоинство становится существенным недостатком. Если под утеплителем будет находиться влажная поверхность, то на ней может появиться грибок.

Материал устойчив к высоким температурам, поэтому его используют в атомной промышленности. В других сферах пеностекло применяют реже из-за его высокой стоимости. В частом строительстве блоками обкладывают печи и фундамент, ими защищают трубы, утепляют стены снаружи здания. Многие потребители решают купить для утепления дома пеностекло, фото поможет сделать выбор.

Гранулированное пеностекло подходит для утепления потолков. Кроме того, им засыпают перекрытия на чердаках, полости в стенах. В строительных магазинах можно приобрести наполнитель, который можно добавлять в сыпучие смеси, применяемые в строительстве. Например, в северных странах его применяют для того, чтобы утеплить дорожное полотно.

Пеностекло – универсальный материал, который можно использовать при возведении сборных домов. Толщина секций составляет 30 см, этого достаточно для возведения постройки в суровом климате. Для поднятия блоков не нужны подъемные краны, поэтому можно сэкономить на спецтехнике.

Решив приобрести газостекло, нужно обратить внимание на качество утеплителя. Необходимо отличать пеностекло от продуктов, которые были произведены путем вспенивания растворимого стекла. Продукт, который называют жидким стеклом, вспенивается при 200º С путем удаления воды из массы. Из-за этого масса становится вязкой. В результате образуется пеностекло, характеристика его известна строителям. Такой материал боится даже обычной воды. А вот пеностекло производят по совсем другой технологии. Оно обладает химической стойкостью и способностью сохранять тепло.

Пеностекло утеплитель легко обработать, его можно сверлить и резать. Но в процессе важно не повредить мельчайшие ячейки с газом, из которых состоит блок.

Как выбрать утеплитель

Выбор утеплителя представляет собой достаточно сложную процедуру. Сегодня на отечественном рынке строительных материалов газостекло предлагают не все торговые точки. Материал востребован на отечественном рынке, но специалисты считают, что время для утеплителя из вспененного стекла еще наступит.

Выбирая такой утеплитель, нужно учесть следующие рекомендации:

  1. Необходимо следить за тем, чтобы материал был одного размера. Полезно изучить его структуру, обращая внимание на ячейки. Они не должны касаться друг друга.
  2. Покупая гранулированное пеностекло, следует узнать у компании-производителя показатель паропроницаемости. Фирмы, выпускающие продукт, могут использовать разные технологии, поэтому паропроницаемость может отличаться. Если в документации, приложенной к товару, об это показателе нет ни слова, то лучше воздержаться от покупки.
  3. Перед покупкой блоков или плит из газостекла полезно рассчитать требуемую толщину материала. Точка росы должна находиться в нем. Важно обратить внимание на температуру наружной стены, она не должна охлаждаться ниже +5 С. Если эти требования не будут соблюдены, то появится конденсат.
  4. Покупать стоит только те материалы, которые поставляют проверенные производители. Не стоит экономить, покупая самые дешевые утеплители. Технология производства газостекла сама по себе дорогая, поэтому на данном этапе развития промышленности вспененное стекло просто не может быть дешевым. Покупка аналога по низкой цене может стать причиной больших финансовых затрат на ремонт и демонтаж объектов в будущем. Лучше сразу приобрести качественные изделия.

Пеностекло отлично подходит для утепления объектов, но проще всего им отделывать еще строящиеся здания, чем готовые. Дело в том, что пеностекло можно заложить в проект строящегося здания. Тогда стены делают тоньше, например, в 1,5 кирпича. А вот при утеплении уже готового здания могут возникнуть сложности с расчетом нагрузки.

Если стена толще 1,5 кирпичей, потребуется положить более толстый слой пеностекла. Причина такого решения заключается в том, что точку росы придется сместить в слой утеплителя.

Выбрав утепление пеностеклом, необходимо подготовить поверхность к укладке утеплителя. Пол и стены должны быть сухими. Кроме того, большое значение имеет подготовка поверхности, она должна быть ровной. Чтобы утеплитель надежно держался, необходимо заделать все неровности на поверхности стен.

Для фиксации материала необходимо использовать специальный клеевой состав. Его наносят не только на поверхность, но и на утеплитель. Если его укладывают на поверхность из древесины, то плиты рекомендуется дополнительно зафиксировать дюбелями. При утеплении фасада здания необходимо установить под плиты опорный профиль.

Заключение

Пеностекло представляет собой современный материал, который широко используется в сфере строительства. Материал обладает многими достоинствами, но он характеризуется рядом недостатков. Среди основных можно назвать его высокую стоимость и хрупкость. Эти и другие моменты нужно учесть перед началом работ. Утеплитель из пеностекла отзывы имеет положительные.

Расчет системы отопления

Владельцу отопительной сети бывает трудно найти вразумительный ответ, как сделать расчет домашнего отопления. Это происходит одновременно из-за большой сложности самого расчета, как такового, и вследствие предельной простоты получения искомых результатов, о чем обычно специалисты не любят распространяться, считая, что и так все понятно.

По большому счету сам процесс расчета нас интересовать не должен. Нам важно как-то получить правильный ответ на имеющиеся вопросы о мощностях, диаметрах, количествах… Какое оборудование применить? Ошибки здесь быть не должно, иначе произойдет двойная или тройная переплата. Как же правильно рассчитать систему отопления частного дома?

Почему большая сложность

Расчет системы отопления с допустимыми погрешностями под силу разве что лицензированной организации. Ряд параметров в бытовых условиях просто не определимы.

  • Сколько энергии теряется из-за обдува ветром? — а когда подрастет дерево рядом?
  • Сколько солнце загоняет энергии в окна? — а сколько будет, если окна не помыть полгода?
  • Сколько тепла уходит с вентиляцией? — а после образования щели под дверью из-за отсутствия замены уплотнителя?
  • Какая реальная влажность пенопласта на чердаке? — а зачем она нужна, после того как его подъедят мыши….

Во всех вопросах показана существующая динамика изменения теплопотерь с течением времени у любого дома. Зачем же тогда точность на сегодня? Но даже на текущий момент, нельзя в бытовых условиях высчитать точно параметры системы отопления исходя из теплопотерь.
Гидравлический расчет тоже сложный.

Как определить теплопотери

Известна некая формула, согласно которой теплопотери напрямую зависят от отапливаемой площади. При высоте потолка до 2,6 метра в самый холодный месяц в «нормальном» доме теряем 1 кВт с 10 м кв. Мощность отопления должна это перекрыть.

Реальные теплопотери частных домов чаще находятся в пределах от 0,5 кВт/10 м кв. до 2,0 кВт/10 м кв. Этот показатель характеризует энергосберегающие качества дома в первую очередь. И меньше зависит от климата, хоть его влияние остается значительным.

Какие удельные теплопотери будут у дома, кВт/10 м кв.?

  • 0,5 – энергосберегающий дом
  • 0,8 – утепленный
  • 1,0 – утепленный «более-менее»
  • 1,3 – слабая теплоизоляция
  • 1,5 – без утепления
  • 2,0 – холодные тонкие материалы, имеются сквозняки.

Общие теплопотери для дома можно узнать умножив приведенное значение на отапливаемую площадь, м. Но это все нас интересует для определения мощности теплогенератора.

Расчет мощности котла

Недопустимо принимать мощность котла исходя из теплопотерь больше чем 100 Вт/м кв. Это значит отапливать (засорять) природу. Теплосберегающий дом (50 вт/м кв.) делается, как правило, по проекту, в котором расчет системы отопопления произведен. Для других домов принимается 1кВт/10 м кв., и не больше.

Если дом не соответствует названию «утепленный», особенно для умеренного и холодного климата, значит он должен быть приведен в такое состояние, после чего уже подбирается отопление по тому же расчету – 100 Вт на метр квадратный.

Расчет мощности котла выполняется по следующей формуле – теплопетери умножить на 1,2,
где 1,2 – резерв мощности, обычно используемый для нагрева бытовой воды.
Для дома 100 м кв. – 12 кВт или чуть больше.

Расчеты показывают, что для не автоматизированного котла резерв может быть и 2,0, тогда топить нужно аккуратно (без закипания), но можно быстрее разогревать дом при наличии и мощного циркуляционного насоса. А если в схеме имеется теплоаккумулятор то и 3,0 – допустимые реалии по теплогенерации. Но не окажутся ли они неподъемными по цене? Об окупаемости оборудования речь уже не идет, только об удобстве пользования…

Послушаем эксперта, он расскажет, как лучше подобрать котел на твердом топливе для дома, и какую мощность принять…

При выборе твердотопливного котла

  • Стоит рассматривать только твердотопливные котлы классической конструкции, как надежные, простые и дешевые и лишенные недостатков бочкообразных устройств под названием «длительного горения» …В обычном твердотопливном котле верхняя загрузочная камера всегда даст немного дыма в помещение. Более предпочтительны котлы с фронтальной камерой загрузки, особенно, если они установлены в жилом доме.
  • Чугунные котлы требуют защиту от холодной обратки, боятся залпового вброса холодной воды, например, при включении электричества. Качественную схему нужно предусмотреть заранее.
  • Защита от холодной обратки также желательна для любого вида котла, чтобы не образовывался агрессивный конденсат на теплообменнике, при его температуре ниже 60 град.
  • Твердотопливный котел желательно брать повышенной мощности, например, двухратной мощности от требуемой. Тогда не нужно будет постоянно стоять у маломощного котла и подбрасывать дрова, чтобы он развил нужную мощность. Процесс при не интенсивном горении будет на порядок комфортнее…
  • Желательно приобретать котел с подачей вторичного воздуха, для дожига СО при неинтенсивном горении. Повышаем КПД и комфортность топки.

Распределение мощности по дому

Генерируемая котлом мощность должна равномерно разойтись по всему дому, не оставить холодных зон. Равномерный прогрев здания будет обеспечен, если мощность установленных радиаторов в каждой комнате будет компенсировать ее теплопотери.

Суммарная мощность всех радиаторов должна быть немного большей чем у котла. В дальнейшем мы будем исходить из следующих расчетов.

Во внутренних комнатах радиаторы не устанавливаются, возможен лишь теплый пол.

Чем длиннее наружные стены комнаты и чем больше в них площадь остекления, тем больше она теряет тепловой энергии. В комнате с одним окном к обычной формуле расчета теплопотерь по площади применяется поправочный коэффициент (приблизительно) 1,2.
С двумя окнами – 1,4, угловая с двумя окнами – 1,6, угловая с двумя окнами и длинными наружными стенами – 1,7, например.

Вычисление мощности и выбор параметров устанавливаемых радиаторов

Производители радиаторов указывают паспортную тепловую мощность своих изделий. Но мелко-неизвестные при этом завышают данные как хотят (чем мощнее – лучше купят), а крупные указывают значения для температуры теплоносителя 90 град и др., которые редко бывают в реальной отопительной сети.

Поэтому принято считать, что в среднем секция радиаторов (500 мм между патрубками вне зависимости от дизайна, материала) будет реально, без перегрева котла, отдавать тепловую мощность около 150 Вт.

Тогда обычный 10 секционный радиатор из магазина – принимается как 1,5 кВт. Угловая комната с двумя окнами площадью 20 м кв. должна терять энергии 3 кВт (2кВт умножить на коэффициент 1,5). Следовательно, под каждым окном в данной комнате нужно разместить
минимум по 10 секций радиатора – по 1,5 кВт.

Для полноценной системы отопления желательно не учитывать мощность теплого пола – радиаторы должны справиться сами. Но чаще удешевляют радиаторную сеть в 2 – 4 раза, — только лишь для доп. подогрева и создания тепловых завес. Как совмещать радиаторы с теплым полом

В чем особенность гидравлического расчета

Если котел уже подобран исходя из площади, то почему бы не подобрать подобным методом насос и трубы, тем более, что шаг градации их параметров намного больше, чем мощности у котлов. Грубый подбор в магазине ближайшего большего параметра не требует точнейших расчетов, если сеть типична и компактна и применяются стандартизированное оборудование – циркуляционные насосы, радиаторы и трубы для отопления.

Так для дома площадью 100 м кв. предстоит выбрать насос 25/40, и трубы 16 мм (внутренний диаметр) для группы радиаторов до 5 шт. и 12 мм для подключения 1 — 2 шт. радиаторов. Как бы мы не старались усовершенствовать свой гидравлический расчет, ничего другого выбрать не придется…
Для дома площадью 200 м кв. – соответственно насос 25/60 и трубы от котла 20 мм (внутренний д.) и далее по разветвлениям как указано выше….

Для совершенно не типичных большой протяженности сетей (котельная находится на большом расстоянии от дома) действительно лучше рассчитать гидравлическое сопротивление трубопровода, исходя из обеспечения доставки необходимого количества теплоносителем по мощности и подобрать особенный насос и трубы согласно расчета…

Подбор параметров насоса для отопления дома

Конкретнее о выборе насоса для котла в доме на основе тепловых гидравлических расчетов. Для обычных 3-х скоростных циркуляционных насосов, выбираются следующие их типоразмеры:

  • для площади до 120 м кв. – 25-40,
  • от 120 до 160 – 25-50,
  • от 160 до 240 – 25-60,
  • до 300 – 25-80.

Но для насосов под электронным управлением Grundfos рекомендует чуть увеличивать типоразмер, так как эти изделия умеют вращаться слишком медленно поэтому не будут излишними на малых площадях. Для линейки Grundfos Alpha рекомендованы производителем следующие параметры выбора насоса.

Вычисление параметров труб

Существуют таблицы по подбору диаметра труб, в зависимости от подключенной тепловой мощности. В таблице приведены количество тепловой энергии в ваттах, (под ним количество теплоносителя кг/мин), при условии:
— на подаче +80 град, на обратке +60 град, воздух +20 град.

Понятно, что через металлопластиковую трубу диаметром 12 мм (наружный 16 мм) при рекомендуемой скорости в 0,5 м/сек пройдет примерно 4,5 кВт. Т.е. мы можем подключить этим диаметром до 3 радиаторов, во всяком случае отводы на один радиатор будем делать только этим диаметром.

Далее трубой 16 мм (20 мм наружный), при той же скорости можем подключить радиаторы до 7,2 кВт – до 5 радиаторов без проблем…

20 мм (25 мм наружный) – почти 13 кВт – магистраль от котла для небольшого дома – или этаж до 150 м кв.

Следующий диаметр 26 мм (32 металлопластик наружный) – более 20 кВт применяется уже редко в главных магистралях. Устанавливают меньший диаметр, так как это участки трубопровода обычно короткие, скорость можно увеличивать, вплоть до возникновения шума в котельной, игнорируя небольшое повышение общего гидравлического сопротивления системы, как не значительное…

Выбор полипропиленовых труб

Полипропиленовые трубы для отопления более толстостенные. И стандартизация по ним идет по наружному диаметру. Минимальный наружный диаметр 20 мм. При этом внутренний у трубы PN25 (армированная стекловолокном, для отопления, макс. +90 град) будет приблизительно 13,2 мм.

В основном применяются диаметры наружные 20 и 25 мм, что грубо приравнивается по передаваемой мощности к металлопластику 16 и 20 мм (наружный) соответственно.

Полипропилен 32 м и 40 мм применяются реже на магистралях больших домов или в особых каких-то проектах (самотечное отопление, например).

  • Стандартные наружные диаметры полипропиленовых труб РN25 — 20, 25, 32, 40 мм.
  • Соответствующий внутренний диаметр — 13,2, 16,6, 21,2, 26,6 мм

Таким образом на основании теплотехнического и гидравлического расчетов мы выбрали диаметры трубопроводов, в данном случае из полипропилена. Ранее мы рассчитали мощность котла для конкретного дома, мощность каждого радиатора в каждой комнате, и подобрали необходимые характеристики насоса твердотопливного котла для всего этого хозяйства, — т.е. создали полный расчет системы отопления дома.

Самостоятельный расчет мощности компонентов системы отопления: циркуляционных насосов, котлов и радиаторов

Проектирование любой системы отопления начинается с расчета ее основных параметров. В первую очередь это касается оптимальной нагрузки на теплоснабжение. Поэтому прежде чем закупать необходимое оборудование следует сделать расчет мощности системы отопления: котлов, радиаторов, насосов, батарей.

  1. Зачем необходим расчет отопления
  2. Определение тепловых потерь дома
  3. Особенности расчета мощности различных отопительных котлов
  4. Расчет мощности радиаторов и батарей отопления
  5. Вычисление мощности циркуляционного насоса

Зачем необходим расчет отопления

Определяющей задачей выполнения вычислений является оптимизация дальнейших расходов. Минимальная необходимая мощность котла отопления напрямую отразится на потреблении энергоносителя. Но экономия должна быть в пределах разумного.

Компоненты автономного отопления

Главное предназначение теплоснабжения – поддержание комфортного уровня температуры в жилых помещениях. На это влияет номинальная мощность чугунных радиаторов отопления, тепловые потери здания и параметры котла.

Для корректного подбора оборудования следует правильно рассчитать его параметры. Это можно сделать с помощью специализированных программ или самостоятельно, воспользовавшись определенными формулами.

Кроме этого специалисты рекомендуют рассчитать мощность котла отопления и других компонентов системы для следующего:

  • Планирование затрат на приобретение оборудования. Чем больше номинальная мощность котла или теплоотдача батареи — тем выше их стоимость. В итоге это скажется на бюджете всего мероприятия по обустройству теплоснабжения;
  • Корректное составление графика нагрузки на систему. Правильный расчет мощности насоса для отопления позволит узнать максимальную и минимальную нагрузку на оборудование при изменении внешних факторов – температуры на улице, в комнатах дома;
  • Модернизация системы. Если наблюдаются большие затраты на отопление, их снижение является первоочередной задачей для минимизации обслуживания. Для этого следует выполнить расчет мощности батареи отопления и других компонентов.

Определившись, что без вычисления основных данных нельзя приступать к закупке материала и комплектующих для обустройства теплоснабжения, следует выбрать методик расчетов. Сначала узнаются характеристики каждого компонента в отдельности – котла, насоса радиаторов. Затем их параметры вводятся в программу отопления и еще раз проверяются. По такой же методике делается расчёт отопления теплицы.

На расчет мощности газового котла отопления влияет тип используемого энергоносителя. Следует заранее определиться, какой именно вид газа будет применен – магистральный или сжиженный.

Определение тепловых потерь дома

На первом этапе необходимо правильно рассчитать объем тепла, который будет уходить через наружные стены, окна и двери здания. Работа теплоснабжения должна компенсировать эти потери и на основе полученных данных будут выполнены дальнейший расчет мощности циркуляционного насоса для отопления, котла и батарей.

Тепловые потери в доме

Определяющим параметром является сопротивление теплопередачи стен и оконных конструкций. Это обратный показатель теплопроводности материалов. Нельзя сделать подбор мощности котла отопления без знания этих величин. Поэтому перед началом расчетов следует узнать толщину стен и материал, из которых они сделаны.

Рекомендуется ознакомиться с содержанием СНиП II-3-79, а также СНиП 23-02-2003. В этих документах указываются нормативные значения сопротивления теплопередачи для различных регионов России. Зная их можно решить вопрос как рассчитать мощность радиатора отопления. Каждый материал обладает определенным значением теплопередачи. Данные о наиболее распространенных для возведения жилых зданий можно взять из стандартных таблиц.

Но этого недостаточно, чтобы в дальнейшем выполнить расчет мощности стальных радиаторов отопления. Дополнительно понадобится узнать толщину каждого типа материалов, используемых для строительства стен. Соотношение этой величины к коэффициенту теплопередачи и будет искомым значением:

R=D/λ

Где R – сопротивление теплопередачи; D – толщина материала; Λ – сопротивление теплопередачи.

В дальнейшем это будет использовано для расчета необходимой мощности котла отопления. Этот этап вычисления является рекомендуемым. Только узнав фактическое сопротивление стен можно определить номинальную мощность всей отопительной системы.

Во время вычисления не учитывается роза ветров, характерная для каждого конкретного региона. Данные о ней влияют на расчет только для многоэтажных зданий.

Особенности расчета мощности различных отопительных котлов

Для правильного подбора мощности котла отопления заранее определяются с его местом установки, типом системы теплоснабжения (открытая, закрытая) и видом используемого топлива. Дополнительно учитывается общая площадь дома и его объем. Эти данные позволят сделать вычисления несколькими способами.

Расчет мощности котла

Самый простой метод вычислить номинальную мощность отопительного оборудования – использовать только площадь дома. Для этого берется стандартное соотношение, что для обогрева 10 м² помещения необходимо затратить 1 кВт тепловой энергии. Этот способ будет действовать только для зданий с хорошей теплоизоляцией и стандартной высотой потолков. Его недостатком является большая погрешность. Так, для дома площадью 150 м² по расчету мощность котла отопления потребуется выбрать модель 15 кВт.

Дополнительно применяется поправочный коэффициент, который зависит от месторасположения здания. Тогда окончательная формула для расчета мощности газового котла отопления будет выглядеть следующим образом:

W=(S/10)*K

Где W – номинальная мощность котла; S – площадь дома; K – поправочный коэффициент.

Для центральных областей России К=0,13; для северных широт эго значение варьируется от 0,15 до 0,2. При подборе мощности котла теплоснабжения для южных областей К=0,08.

Точные вычисления можно сделать только после предварительного определения коэффициента теплопередачи стен. Эта методика была описана выше. Для начала находим температурную разницу между нагретым воздухом на улице и в доме – Δt. Затем необходимо определить тепловые потери. Они находятся по формуле:

Р=Δt/R

Где Р – тепловые потери дома; Δt – температурная разница; R – коэффициент сопротивления теплопередачи.

Далее для расчета мощности газового котла теплоснабжения необходимо умножить площадь наружных стен на тепловые потери. В качестве примера возьмем дом площадью стен 127 м², коэффициент сопротивления теплопередачи равен 0,502. Оптимальное значение Δt должно составлять 55. В таком случае тепловые потери на 1 м² будут равны:

Р=55/0,505=108 Вт/м²

Исходя из этого можно рассчитать мощность котла теплоснабжения:

W=127*108=13.7 кВт

В дальнейшем определяется нагрузка на систему отопления при различных значениях Δt. Рекомендуется выбрать модель оборудования с небольшим запасом по мощности – 10-15%. Это позволит расширить теплоснабжение без замены котла и радиаторов.

Для квартир с нормальным утеплением можно взять соотношение 41 Вт тепла на 1 м³ объема помещения в панельном доме и 38 Вт в кирпичном. Если была выполнена теплоизоляция стен – потребуется сделать вышеописанный расчет.

Расчет мощности радиаторов и батарей отопления

Но помимо котла на работу теплоснабжения влияют технические характеристики других компонентов. Поэтому необходимо знать, как рассчитать мощность батареи отопления. Фактически в ней происходит тепловая передача энергии от горячей воды воздуху в помещении.

Виды отопительных радиаторов

Для расчета мощности батарей отопления необходимо фактически определить их теплоотдачу. Так называется сам процесс передачи тепла от нагретого тела воздуху в помещение. Есть несколько факторов, которые влияют на это показатель. Главным из них является материал изготовления. Чем меньше сопротивление теплопередачи у батареи – тем ниже тепловые потери. Однако наряду с этим нужно учитывать эффект аккумулирования энергии. Это наблюдается у чугунных конструкций. Так как для расчета мощность батареи отопления необходимо знать уровень заполнения ее горячей водой – следует вычислить общую площадь конструкции. От этого также зависит суммарная теплоотдача.

Для расчетов необходимо определить Δt по следующей формуле:

Δt=((Тпод-Тобр)/2)-Тпом

Где Тпод, Тобр и Тпом – температуры в подающей, обратной трубе и в помещении.

Для вычисления мощности чугунных радиаторов отопления понадобится коэффициент теплопроводности конкретного материала и общая площадь конструкций. Первое можно взять из стандартных таблиц. Для биметаллических моделей в расчете мощности радиатора отопления учитывается стальные сердечники трубопроводов и алюминиевая нагревательная поверхность.

Вычисление выполняется по следующей формуле:

Q=Δt*k*S

Где Q – удельная теплоемкость радиатора; К – коэффициент теплопроводности; S – общая площадь конструкции.

Таким образом можно рассчитать мощность батареи отопления. Однако на практике это затруднительно, так как остаются неизвестными несколько факторов – фактическая толщина стенки, дополнительные элементы, используемые при изготовлении. Также в расчете мощности батареи теплоснабжения не учитываются тепловые потери в помещении.

Большинство производителей указывает в паспорте радиатора номинальную мощность. Но это делается только для одного теплового режима работы отопления. Поэтому взяв за основу паспортные данные изделия можно точно рассчитать мощность радиатора теплоснабжения.

Фактические показатели теплоотдачи батареи зависят от правильности ее установки. При расчете мощности стальных радиаторов отопления не учитывается их расположение относительно подоконника, пола и стен в комнате.

Вычисление мощности циркуляционного насоса

В закрытых системах теплоснабжения циркуляция жидкости происходит принудительно. До того как рассчитать мощность насоса для отопления необходимо составить схему теплоснабжения. Только после этого можно приступать к вычислениям.

Циркуляционные насосы для отопления

Есть несколько параметров, определяющих основные характеристики этого компонента отопления. Работа насоса направлена на увеличение скорости движения теплоносителя в системе. Помимо этого он не должен создавать избыточные гидравлические нагрузки, повышать шум. Именно поэтому так важно правильно рассчитать мощность насоса для отопления.

Для выполнения вычислений потребуется узнать такие характеристики оборудования:

  • Производительность. Она характеризует количество тепла, переносимого за единицу времени по трубопроводам с помощью циркуляционного насоса;
  • Гидравлическое сопротивление. Это потери давления в магистралях из-за трения воды о внутреннюю поверхность компонентов теплоснабжения. При расчете мощности насоса для отопления этот показатель является одним из определяющих, так как от него зависит скорость потока теплоносителя;
  • Потребляемая мощность. Указывается производителем в паспорте устройства. Определяется характеристиками электродвигателя, подключенного к ротору насоса.

На первом этапе расчета мощности циркуляционного насоса для отопления следует вычислить производительность. Для этого потребуется узнать необходимую тепловую мощность системы теплоснабжения. Расчет производительности выполняются по следующей формуле:

Q=(0.86*R)/(Tпод-Тоб)

Где Q – производительность устройства; R – расчетная тепловая мощность, Вт; Тпод и Тоб – температура воды в подающей и обратной трубе отопления.

Основным фактором, влияющим на производительность насоса, является тепловая мощность системы. Лучше всего вычислить ее максимально точно, чтобы избежать покупки устройства с несоответствующими параметрами. Также на расчет мощности насоса для теплоснабжения влияют характеристики теплоносителя. В случае использования антифризов номинальный показатель необходимо увеличить на 10-15%, так как их плотность значительно выше, чем у дистиллированной воды.

Гидравлическое сопротивление циркуляционного насоса определяется следующей формулой:

Н=1,3*(R1*L1+ R2*L2+… Z1+Z2)/10000

Где R1 и R2 – потеря давления на подающем и обратном участках магистрали; L1 и L2 – протяженность трубопроводов; Z1 и Z2 – гидравлическое сопротивление компонентов системы.

Последний показатель для расчета мощности насоса для теплоснабжения можно взять из паспорта устройства. Если же таковой отсутствует — рекомендуется применять данные из таблицы.

Компонент теплоснабжения

Гидравлическое сопротивление, Па

Производители указывают гидравлическое сопротивление в величине водяного столба. Т.е. это показатель мощности, которая способна поднять воду в вертикальной трубе на определенный уровень.

Во время расчета мощности циркуляционного насоса для теплоснабжения не учитывается наличие нескольких скоростных режимов. Хотя на практике с помощью этой функции устройства можно оптимизировать скорость движения теплоносителя, тем самым сбалансировав всю систему.

Сложно ли сделать точный расчёт отопления дома или теплицы самостоятельно? Помимо вышеописанных способов рекомендуется применять специализированные программы для теплоснабжения. Это позволит сверить результаты и добиться максимальной точности расчетов.

В видеоматериал показан пример расчета мощности отопления с помощью специализированной программы:

Расчет радиаторов при отоплении газовым котлом

Если котел работает, а в доме холодно – виноваты радиаторы отопления, если точнее, их количество. К такому выводу мы приходим, когда ищем ответственного за некомфортную температуру в помещении. Спешно добавляем несколько секций, потом еще и наконец, добиваемся желаемого результата.

Этот путь пришлось пройти и мне, несмотря на тщательный расчет количества радиаторов отопления, сделанный заранее.

Сделать это непросто: надо перекрыть или даже слить воду с системы и снять радиатор. Увеличить количество секций (у вас есть специальный ключ для радиаторов?), переставить крепления радиаторов, опять все смонтировать, заполнить систему водой (повезло, если радиатор смонтирован герметично).

Как я делал расчет радиаторов отопления

Как позже выяснилось, верить нельзя даже паспорту отопительных приборов.

, – как говорил главный герой фильма «Ирония судьбы…».

Начну по порядку, с теории

Радиаторов предстояло купить немалое количество, так как отапливаемых помещений было много: кухня, ванная, туалет, прихожая, гостиная, две спальни внизу, две больших комнаты наверху. Котельную тоже решил не оставлять без отопления. Площадь у всех комнат разная, от 2-х метров в туалете до 25 м 2 в гостиной. Понял, что без точного расчета не обойтись, и полез в Интернет.

Быстро нашел главную информацию: на обогрев 1 м 2 площади требуется 100 Ватт тепловой энергии. К такому результату приводят и упрощенные подсчеты, учитывающие только площадь помещения, и заумные, с учетом кубатуры комнаты и всех возможных параметров. Небольшие отклонения я не принимал во внимание, они невелики.

Начались конкретные вычисления. Сначала определил, сколько тепла нужно для каждой комнаты: площадь умножил на 100. Перед подсчетом количества секций отправился в магазин, на очную ставку с радиаторами. Поговорил с продавцом, заглянул в паспорт изделия. И тот, и другой утверждали, что одна секция «выдает» 150-200 ватт, следовательно, обогреет 1,5-2 кв м. Этот показатель был примерно одинаков у всех типов радиаторов, и я, как говорят, «повелся» на эту цифру, ведь не могут все паспорта врать.

Калькулятор быстро справился с работой: на туалет – 1 секция, на гостиную – 12-13. Уж очень скромно выглядят 6 секций под полутораметровым окном. Показалось маловато, да и запас тепла никогда не помешает. Поэтому, в некоторых комнатах увеличил количество секций в полтора раза. И все равно попал в «засаду».

Как оказалось, расчет количества радиаторов отопления, сделанный по паспортным данным, и близко не совпадает с реальной потребностью. Замеры сделаны, наверное, в идеальных условиях: герметично утепленная комната, ни грамма тепла никуда не просачивается.

Зимой в самые морозные дни в доме было прохладно, несмотря на горячие батареи. Это стало для меня хорошим стимулом, и я еще раз проштудировал инфу про радиаторы. И обнаружил, что я пропустил один очень важный момент.
Когда в паспорте указывают тепловую мощность радиатора, то не все фирмы-изготовители указывают, при какой температуре воды эта мощность достигается. Обычно это происходит при остывании теплоносителя с 90 до 70 градусов! И зачем мне такие горячие батареи? И как теперь считать количество радиаторов?

Ничего считать не будем, ставим одну секцию на метр.

Как оказалось, он тоже втихаря от меня изучал тему отопления, пришел к какому-то решению и теперь «гнул» нас к большим единовременным расходам на покупку радиаторов.

Так мы и сделали. Следующую зиму жили в комфорте, внук всегда ходил в майке и босиком по дому. Температура на котле выше 60 градусов нам практически не понадобилась, даже, когда целый месяц стояли морозы под 30. И это при том, что утепление дома снаружи еще не закончили.

При эксплуатации радиаторов выяснилась еще одна особенность. Если температура воды высокая, батарея постепенно прогревается и снизу доверху имеет почти одинаковую температуру. Если же уменьшить нагрев, то радиатор не успевает прогреться полностью: низ остается холодным, а верх – теплым. Радиатор работает вполсилы.

Как это оценить, я не понял. С одной стороны, материал радиатора работает не на износ, а в щадящем режиме. А с другой – может, это лишние траты?

Еще ни слова я не сказал о том, какие же радиаторы я выбрал и как они себя ведут в процессе работы.
Мой выбор пал на алюминиевые, какой-то итальянской фирмы. В том магазине, где брал котел, выбор алюминиевых был невелик, и я не стал носиться по городу в поисках других, да и не было у меня предпочтений. Потом, когда радиаторы докупались, даже и не смотрел на название, т.к. считаю, что все они одинаковы, лишь немного отличаются дизайном.
Как вы, например, проверите, соответствуют ли радиаторы заявленным свойствам? Только слухи и отзывы, но это кому как повезет.

Есть один, главный критерий выбора – материал, из которого сделан радиатор.

Как же выбрать радиаторы отопления из множества предлагаемых?

Непростое это дело – выбрать хороший радиатор. Я уже знал, что внешний вид никак не влияет на эксплуатационные качества. Выбирать по красоте и размеру можно предоставить жене: «Дорогая, тебе какой больше нравится? Вот этот беленький или вон тот маленький?»

Я же колебался между алюминиевыми и чугунными. Остальные я не рассматривал по причине их взаимоотношений с коррозией. Что делает ржавчина со сталью не знает только…, да все знают! И как бы мне не расписывали стальные отопительные панели и биметаллические радиаторы, я точно знаю, что при попадании воздуха в систему, железо начинает окисляться. Как бы его не защищали! А в биметаллических радиаторах к недостаткам можно отнести и разное тепловое расширение у стали и алюминия. Это тоже способствует разрушению соединений. На фоне небольшого срока жизни таких отопительных приборов уже как-то неинтересно, что они выдерживают высокое давление, алюминиевые ребра хорошо отдают тепло и т. д. Даже условия эксплуатации у них должны быть иными: нежелательно использовать их в системах со сливом воды на лето, частые подпитки тоже не идут на пользу.

Кстати, мои опасения быстро нашли подтверждение. Один мой друг купил небольшой кирпичный дом старой постройки. Красиво и крепко строили до революции, ничего не скажешь! Только площадь маленькая. Друг сделал пристройку, все объединил одной крышей. В «новый» дом провел новое отопление. Надо было такому случиться: его сосед уже год радовался стальным панельным радиаторам. Он так расхвалил их, что друг, даже не задумавшись над вопросом как выбрать радиатор отопления, установил такие же по всему дому. Через полтора года они у него проржавели. А что же у соседа? Он сварщик и уже давно (купил-то он раньше) пытается их залатать сваркой, которая только прожигает тонкое железо. Теперь дружок меняет все на чугун.

Каюсь, это я приложил руку к его выбору. Нравятся мне чугунные радиаторы своей неприхотливостью к чистоте и к частым обновлениям воды в системе (это значит, постоянно поступает воздух, кислород). Скачки давления и химический состав воды им были нипочем еще в старом исполнении, в виде батареи-гармони. Теперь же, после того как к ним приложили руку дизайнеры, их даже с виду не сразу отличишь от алюминиевых. Некоторым не нравится их вес и медлительность при нагреве. Но разве вы их таскаете по комнатам? Поставил один раз и забыл на много лет. Медленно греясь, они так же медленно остывают. Зимой при выключении электричества, я не раз вспомнил об этом качестве чугунных радиаторов. Через 5 минут после отключения алюминиевые уже как лед.

Но, все же я остановил свой выбор на легких, достаточно крепких для индивидуальных систем отопления, устойчивых к коррозии радиаторах из алюминия. Я знал по опыту старой системы отопления, что подпитки неизбежны, давление в системе небольшое и постоянное – разрывы им не страшны. Прельстила меня возможность быстро регулировать температуру в комнате. Так и представлял: прихожу с рыбалки промокший, покрутил ручки на котле, и через пять минут ­– пожалуйста, сиди, грейся, наслаждайся.

Нагреваются радиаторы из алюминия действительно быстро. Но чтобы нагреть комнату, надо нагреть находящийся в ней воздух. Чугунные радиаторы делают это немного дольше. Но это такая небольшая погрешность, что ей можно пренебречь.

Монтаж радиаторов отопления

Первый вариант отопительной системы мы с сыном собрали из металлопластиковых труб. Собирать было – одно удовольствие. Специальными ножницами отрезали трубу необходимого размера и закрепляли на конце нужный фитинг. К нему подсоединяли другой отрезок или соединяли с отопительным прибором. Гайки легко затягивали с помощью одного – двух ключей.

Радиаторы перед установкой на место готовили. В каждый ввернули кран Маевского, для стравливания воздуха, а в некоторые поставили обычные краны, чтобы при необходимости перекрыть подачу тепла в конкретный радиатор. Повесили на стену с помощью штатных кронштейнов. Мы оказались предусмотрительными, и в местах крепления батарей, укрепили под гипсокартон закладные бруски. Но, честно говоря, там и веса то нет, по сравнению с чугуном.

Особенность нашей системы – разводка труб в подполье. Через отверстия в полу в комнату выходили только отводы на радиаторы, на умывальник, на ванную и на мойку в кухне. На трубы надели специальный изолятор, чтобы избежать потерь тепла.

Металлопластик выдержал одну зиму. На вторую мы заметили, что система не держит давление. Подтягивание гаек проблему не решило. Наверху нигде не подтекало, спустились в подполье. Оказалось, течет первый участок трубы, от котла до радиатора. Здесь самые большие температуры и самые частые и большие перепады. Труба оказалась со швом, проглядели мы, наверное, при покупке!

Шов начал расходится по всей длине отрезка.

Пришлось слить воду из системы и заменить этот кусок полностью. Теперь, опасаясь новых сюрпризов, стали регулярно осматривать состояние труб, а летом решили заменить все трубы на полипропиленовые.

Такая проблема, оказывается, не только у меня. У знакомого, о котором я рассказывал в статье про котел Vaillant наметилась такая же проблема. Меняли трубы мы практически одновременно.

Купив дополнительные радиаторы, мы с сыном решили смонтировать их по-новому. Для этих целей был приобретен специальный паяльник для полипропиленовых труб, сами трубы, качественные, армированные и множество уголков, соединений, тройников.

Сейчас в системе, охватывающей два этажа, всего несколько резьбовых соединений, вход в котел, выход на радиаторы. Собирать все трубы в единую нитку в некоторых местах неглубокого подполья было неудобно. К тому же когда вставляешь последний отрезок, иногда видишь, что порядок соединений удобнее другой.

Рекомендую перед началом работы составить план с порядком сварки отрезков труб отопления. Тогда не придется лишний раз гнуть изо всех сил несгибаемую трубу.

Трубопровод из сваренных полипропиленовых труб, без проблем отработал уже два года. Не пришлось даже гайки у котла подтягивать (самое проблемное место).

Ссылка на основную публикацию